
Release Notes for Polyspace®

Products for C/C++

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Release Notes for Polyspace® Products for C/C++

© COPYRIGHT 2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

R2013a

Polyspace Client for C/C++ Product 2
Modified Polyspace installer . 3
Improvements to coding rules checker 5
Verification uses native binary file 6
Negative pointer offset . 7
Exact representation of floating point numbers 9
Option -function-called-before-main renamed 10
Changes to verification results . 11
Changes to analysis options . 12
Options removed . 13

Polyspace Server for C/C++ Product 14
Improved Polyspace Metrics security with HTTPS 15

R2012b

Polyspace Client for C/C++ Product 18
Review of verification results improvement 19
Accuracy improvements for MISRA rules checking 25
Definition of custom coding rules . 27
Configuration of C/C++ rule checking 28
Reorganized Configuration pane . 29
Code verification for very large applications 32
Report content filtering . 33
Parent folder for verification results 34
Support for relative paths . 35
Macro expansion in source code view 36
Modifying or removing generic targets 38
Improved COR check for function pointer 39
Permissive function pointer calls . 42
Enhanced stub generation for Standard Library functions
(C) . 44

iii

Intermediate verification level support 45
Analysis of public methods called by generated main 46
DRS file generation for unit-by-unit verification 47
Comments for generated DRS files 48
Automatic import of comments and justifications 49
Storage of temporary files . 50
Changes to verification results . 51
Changes to coding rules checker results 52
Removal of Polyspace in One Click 53
Changes to analysis options . 54
Options removed . 69

Polyspace Server for C/C++ Product 70
Password-protected access to projects in Polyspace
Metrics . 71

Metrics for level 0 potential errors . 72

R2012a

Polyspace Client for C/C++ Product 74
Single Perspective for Coding Rule Violations and Run-Time
Checks . 75

Compilation Environment Templates 76
Suppression of NTC, NTL and UNR Checks Caused by Red
Checks . 78

Probable Cause Information About Red and Orange
Checks . 81

Enhanced MISRA-C Coding Rules Checker 82
Integrated Compilation Assistant . 83
Data Range Specification Enhancements 84
Redefinition of Successful Verification 85
Polyspace Report Generator Enhancements 86
Polyspace In One Click (POC) Enhancement 87
Absolute Addresses . 88
Header Files Without Run-Time Checks and Coding Rule
Violations . 89

Improved Access to Polyspace Demos 90
Changes to Verification Results . 91
Changes to Coding Rules Checker Results 92
Changes to Analysis Options . 93

iv Contents

Options Removed . 94

Polyspace Server for C/C++ Product 95
Enhanced Polyspace Metrics Project Index 96
Redefinition of Successful Verification 97

R2011b

Polyspace Client for C/C++ Product 100
STD_LIB Check . 101
Enhanced MISRA-C Coding Rules Checker 102
Review Orange Checks that are Potential Run-Time
Errors . 103

Display Sources of Orange Checks . 104
Enhanced Automatic Orange Tester 105
No Gray Checks in Unreachable Code 106
Global Variable Range Information 107
Read and Write Access in Dead Code 108
Run All Verifications in Project . 109
Specifying Functions Not Called by Generated Main 110
Stubbing Specific Functions . 111
Changes to Verification Results . 112
Changes to Coding Rules Checker Results 114
Changes to Analysis Options . 117
Deprecated Options . 118

Polyspace Server for C/C++ Product 119
Running Multiple Verifications Simultaneously 120
Polyspace Metrics . 121

R2011a

Polyspace Client for C/C++ Product 124
Code Metrics (New for C++) . 125
Saving Polyspace Metrics Review . 126

v

Compilation Assistant . 127
Improved Search Function . 128
Back to Source Function in Run-Time Checks
Perspective . 129

Structure Fields in Data Dictionary 130
Overflow Check Customization . 131
Main Generator Improvements . 132
Verification Time Limit . 134
Continue Verification with Compile Errors 135
Precision Improvements . 136
Permissive Mode Set By Default . 137
Default Project Location . 138
Variable Range Inconsistency between Variable Access
Pane and Tooltips . 139

Visual Studio Integration . 140
Product Name Change in Files and Folders 141
Visual Studio Support . 142
Eclipse IDE Support . 143
License Manager Support . 144
Changes to Verification Results . 145
Changes to Coding Rules Checker Results 148
Changes to Analysis Options . 150

Polyspace Server for C/C++ Product 152
Code Metrics (New for C++) . 153
Saving Polyspace Metrics Review . 154
Automatic Comment Import for Server Verifications 155
License Manager Support . 156

R2010b

Polyspace Client for C/C++ Product 158
Polyspace Graphical User Interface 159
Permissiveness on File and Folder Names 163
MISRA C++ Coding Rules Support 164
Coding Rules Checker Enhancements 165
Code Metrics (for C) . 166
Filtering Orange Checks Caused by Input Data (New for
C++) . 167

vi Contents

New Options to Classify Run-Time Checks and Coding
Rules Violations . 169

Japanese and Korean Text in Comments 171
Pointer Information in the Run-Time Checks
Perspective . 172

Main Generation in C++ . 173
Multiple Functions Called Before Main 175
Support for C99 Extensions (C) . 176
New Target Processor Support (C) . 178
Default Target Processor . 179
Default Operating System Target . 180
Include Folders Added to Verification by Default 181
Operating System Support . 182
Changes to Verification Results . 183
Changes to Coding Rules Checker Results 188

Polyspace Server for C/C++ Product 194
Polyspace Metrics Web Interface . 195
Automatic Verification . 196
Operating System Support . 197

R2010a

Polyspace Client for C/C++ Product 200
License Activation . 201
MISRA C++ Checker . 203
Source Code Comments . 204
Importing Review Comments . 205
Data Range Specifications (DRS) Enhancements 207
Pointer Information in the Viewer . 210
Enhanced Call Tree View and Variables View (Data
Dictionary) . 211

Enhanced Search Function in Viewer 213
Filtering Orange Checks in Viewer (C only) 214
Methodological Assistant Enhancements 216
Class Analyzer Enhancements for C++ 217
Change to Time Format in Log File 218
Merging of OVFL and UNFL Checks . 219
Improved UNR Checks . 220
Changes to Verification Results . 221

vii

Changes to Coding Rules Checker Results 230
Enumerated Types Support . 232
New Target Processor Support . 233
Operating System Support . 234

Polyspace Server for C/C++ Product 235
License Activation . 236
Queue Manager Interface . 238
Operating System Support . 239

R2009b

Polyspace Client for C/C++ Product 242
Report Generator . 243
Viewer Enhancements . 245
Global Data Graphs . 246
Unit-by-unit Verification . 247
Changes to Coding Rules Checker Results 248
Operating System Support . 250

Polyspace Server for C/C++ Product 251
Operating System Support . 252

R2009a

Polyspace Client for C/C++ Product 254
JSF++ Support . 255
Back to Source Link . 256
Eclipse Integration . 257
Performance Improvements for Multi-Core Systems 258
Architecture Improvements . 259
Mathematical Functions Included in Stubs 261
Character Encoding Options . 263
Automatic Orange Tester . 264
Operating System Support . 265

viii Contents

Polyspace Server for C/C++ Product 266
Performance Improvements for Multi-Core Systems 267
Architecture Improvements . 268
Operating System Support . 270

R2008b

Polyspace Client for C/C++ Product 272
Automatic Orange Tester . 273
JSF++ Support . 274
Operating System Support . 275

Polyspace Server for C/C++ Product 276
Operating System Support . 277

R2008a

Polyspace Client for C/C++ Product 280
Removed Cygwin Software Dependency for Windows
Platforms . 281

Enhanced Installer . 283
Viewer Improvements . 284
One-Click Enhancements . 285
Generic Target Option for C++ . 286
Class Analyzer Enhancements for C++ 287
GNU Compiler Support for C++ . 288
Polyspace C++ Add-in for Visual Studio 289
Operating System Support . 290

Polyspace Server for C/C++ Product 291
Removed Cygwin Software Dependency for Windows
Platforms . 292

Enhanced Installer . 294
GNU Compiler Support for C++ . 295
Operating System Support . 296

ix

x Contents

R2013a
Version: 8.5
New Features: Yes
Bug Fixes: Yes

1

R2013a

Polyspace Client for C/C++ Product

2

Modified Polyspace® installer

Modified Polyspace installer

In R2013a:

• The Polyspace® installer does not create the Polyspace_Common folder.

• The Polyspace product does not depend on environment variables, that is,
the installer does not create POLYSPACE_* variables.

• The Remote Launcher Manager does not open automatically during the
installation process. In addition, if the service or daemon was running
before the installation of the new product, the service or daemon is not
automatically restarted. You must manually open the Remote Launcher
Manager, configure your Polyspace Server, and then start the service or
daemon.

• You must manually install Polyspace plug-in (or add-in) files. The
Polyspace installer does not automatically activate these files. For example,
before you run a verification from the Eclipse™ IDE, you must manually
install the Polyspace plug-in file.

The following table gives information about new locations for files and folders.

Binary files Location in previous release Location in R2013a

Polyspace
verification
environment

Polyspace_Install\PVE
\Polyspace.exe

Polyspace_Install/PVE/bin
/polyspace

Polyspace_Install\polyspace\bin
\polyspace[.exe]

Polyspace
for C/C++

Polyspace_Install\Verifier\wbin

Polyspace_Install/Verifier/bin

Polyspace_Install\polyspace\bin

Spooler Polyspace_Common\RemoteLauncher
\wbin\PSQueueSpooler.exe

Polyspace_Common/RemoteLauncher
/bin/polyspace-spooler

Polyspace_Install\polyspace\bin
\polyspace-spooler[.exe]

3

R2013a

Binary files Location in previous release Location in R2013a

Automatic
Orange
Tester

Polyspace_Common\AutomaticOrange
Tester\PSTAutomaticOrangeTester.exe

Polyspace_Common\AutomaticOrange
Tester\bin\polyspace-automatic-
orange-tester

Polyspace_Install\polyspace\bin\
polyspace-automatic-
orange-tester[.exe]

Polyspace
plug-in for
Eclipse

Polyspace_Common\PolyspaceForEclipse Polyspace_Install\polyspace
\plugin\eclipse

Model Link
plug-ins

Polyspace_Common\PolyspaceModelLink Polyspace_Install\polyspace
\toolbox\pslink

Polyspace
plug-in
for IBM®

Rational®

Rhapsody®

Polyspace_Common\PolyspaceUMLLink Polyspace_Install\polyspace
\plugin\rhapsody

Polyspace
add-in for
Visual
Studio®

Polyspace_Common\VisualInterface
[2005/2008/2010]

Polyspace_Install\polyspace
\plugin\msvc\[2008|2010]

Visual Studio 2005 is no longer
supported

Remote
Launcher

Polyspace_Common\RemoteLauncher Polyspace_Install\polyspace\bin

Report
Generator

Polyspace_Common\ReportGenerator Polyspace_Install\polyspace\bin
\polyspace-report-generator

For more information, see:

• “Polyspace Software Administration”

• “Install Polyspace Plug-In for Eclipse IDE”

• “Install Polyspace C++ Add-In for Visual Studio”

4

Improvements to coding rules checker

Improvements to coding rules checker

Ignore header folders without source files option
You can use the -I option multiple times to specify folders with header and
source files to include in the compilation process. The -includes-to-ignore
option allows you to exclude some or all of these folders from coding rules
checking. In R2013a, if you specify the option -includes-to-ignore with the
new value all-headers, the rule checker excludes folders that contain only
header files, that is, folders that contain no source files.

For more information, see “Exclude Include Folders from Rules Checking”.

Summary of coding rule violations in verification log
When you run a verification, the software reports only a summary of rule
violations in the verification log. The software stores details of rule violations
in an XML file within the Results/Polyspace-Doc folder, for example,
MISRA-C-report.xml. Previously, the software reported details in the
verification log.

MISRA C rule behavior changed in R2012b

Rule Behavior before R2012b Current Behavior For more information,
see ...

8.9 No warning on
undefined objects with
-allow-undef-variables
option.

Because the option
-allow-undef-variables
was removed, undefined
variables produce the
warning:

“Undefined global variable
XX”

“Declarations and
Definitions”

5

R2013a

Verification uses native binary file
In R2013a, the Polyspace verification is run using the native binary file
for your computer architecture. Previously, you specified a 32-bit or 64-bit
verification through the option -machine-architecture option_value.
Now, if you specify -machine-architecture, the software ignores the option
and generates the following warning:

Option -machine-architecture option_value is obsolete.
Verification run using native binary file for your
computer architecture.

Previously, the default option value (auto) specified 32-bit verification.
Now, on a Linux® system, the Polyspace verification is 64-bit. You may
observe an increase in verification time compared to previous releases. The
increase depends on the application being verified and the architecture of
your machine.

Note For Linux systems, only the Polyspace 64-bit Client and Server
products are supported.

6

Negative pointer offset

Negative pointer offset
Compatibility Considerations: Yes

Polyspace does not allow the use of pointers with negative offset values, even if
the pointers point to allocated memory locations. Consider the following code.

typedef struct
{

int a;
int b;
int c;

} s_little_t;

typedef struct
{

s_little_t s1; // offset 0, size 12
s_little_t s2; // offset 12, size 12
int x; // offset 24, size 4

} s_big_t;

void test(void)
{

void *addr_lx;
addr_lx = (void *) malloc (12U);
assert(addr_lx != 0);

{
s_little_t *ly = (s_little_t *)addr_lx;
ly->a = 1;
ly->b = 2;
ly->c = 3;

{
char *bz = ((char *)ly) - 12U; // Negative offset
s_big_t *bs = (s_big_t *)bz;
assert(

((*bs).s2.c) == 3); //Red IDP
}

}

7

R2013a

}

Even though bs points to allocated memory, the negative offset of –12 bytes
generates a red IDP check.

Compatibility Considerations

Previously, if you specified the options -allow-pointer-arith-on-struct
and -size-in-bytes, the software might have generated a green IDP check.
In R2013a, specifying these two options does not change the red IDP check.

As a result of this change, your results may change when compared to
previous versions of the software. Some checks may change color, and the
selectivity rate of your results may change.

8

Exact representation of floating point numbers

Exact representation of floating point numbers

Polyspace uses the exact value of a representable floating point number
during code verification. Consider the floating point value of 1.0. Previously,
Polyspace represented this value as a range 0.9999 – 1.0001. Now, Polyspace
uses the exact value, that is 1.0.

9

R2013a

Option -function-called-before-main renamed

The option -function-called-before-main has been renamed
-functions-called-before-main. However, the software continues to
recognize the old option name.

10

Changes to verification results

Changes to verification results

See “Negative pointer offset” on page 7.

11

R2013a

Changes to analysis options

• “New options” on page 12

• “Changes to existing options” on page 12

New options
None.

Changes to existing options

Option For more information, see ...

-includes-to-ignores “Ignore header folders without source files
option” on page 5

-function-called-before-main “Option -function-called-before-main
renamed” on page 10

12

Options removed

Options removed
The -machine-architecture option has been removed. See “Verification uses
native binary file” on page 6.

13

R2013a

Polyspace Server for C/C++ Product

14

Improved Polyspace® Metrics security with HTTPS

Improved Polyspace Metrics security with HTTPS

You can now configure the Polyspace Metrics Web server with a secure
HTTPS protocol. This configuration enables encrypted communication
between the Polyspace server and the Polyspace Metrics Web interface. See
“Configure Polyspace Metrics Web Interface”.

15

R2012b
Version: 8.4
New Features: Yes
Bug Fixes: Yes

17

R2012b

Polyspace Client for C/C++ Product

18

Review of verification results improvement

Review of verification results improvement

Check filters in results summary view
The Results Summary toolbar provides check filters, which previously were
available only in the Results Explorer view.

You can apply the check filters from either view. For example, if you filter
checks by color and category in the Results Summary view, the software
also filters out these checks from the Results Explorer view. For more
information, see Filter Checks.

More filters for reviewing coding rule violations
On the Results Explorer or Results Summary toolbar, the following filters
allow you to focus your review on specific kinds of coding rule violations.

19

http://www.mathworks.com/help/releases/R2012b/polyspace_c/c_ug/reviewing-results-in-manual-mode.html#bso7rl_-1

R2012b

Coding rule filters – menu items Select to display violations of …

Show rules set as error Rules assigned the state Error. Any
violation of these rules ends the
verification after the compilation
phase.

Show rules set as warning Rules assigned the state Warning.
Each violation of a coding rule
generates a warning, but the
verification continues.

Show required rules Required MISRA C® or MISRA® C++
rules. For information about these
rules, refer to MISRA C and MISRA
C++ coding standards.

Show advisory rules Advisory MISRA C or MISRA C++
rules. For information about these
rules, refer to MISRA C and MISRA
C++ coding standards.

Show shall rules Shall JSF AV C++ rules. These
rules are mandatory requirements.
For more information about these
rules, refer to Joint Strike Fighter
Air Vehicle C++ coding standards.

Show will rules Will JSF AV C++rules. These
rules are intended to be mandatory
requirements, but they do not
require verification. For more
information about these rules, refer
to Joint Strike Fighter Air Vehicle
C++ coding standards.

Show should rules Should JSF AV C++ rules, which
are advisory rules. For more
information about these rules, refer
to Joint Strike Fighter Air Vehicle
C++ coding standards.

20

Review of verification results improvement

Coding rule filters – menu items Select to display violations of …

Show obligatory rules Obligatory MISRA AC AGC rules.
For more information about these
rules, refer to AC AGC Guidelines
for the Application of MISRA-C:2004
in the Context of Automatic Code
Generation.

Show recommended rules Recommended MISRA AC AGC
rules. For more information about
these rules, refer to MISRA AC
AGC Guidelines for the Application
of MISRA-C:2004 in the Context of
Automatic Code Generation.

To access these filters, on the Results Explorer or Results Summary
toolbar, click the coding rules icon.

21

R2012b

In addition, when you select a coding rule violation in the Results Explorer,
Results Summary, or Source view, the Check Details pane displays the
rule type (req, adv, shall, will, should, obl, or rec) in the rule description.
For example:

MISRA C 16.2 (req) Function Recursion shall not call itself, either directly or indirectly.

MISRA C++ 5-2-9 (adv) A cast should not convert a pointer type to an integral type.

JSF C++ 98 (should) Every nonlocal name, except main(), should

be placed in some namespace.

For more information, see Examine Coding Rule Violations and Apply Coding
Rule Violation Filters.

Justify and comment a group of checks
You can now select a group of checks in either the Results Explorer or
Result Summary view, and then justify and add review information to those
checks. For more information, see Review and Comment Checks.

Navigation improvements
In the Source view of the Results Manager perspective, if you right-click a
local variable, the context menu provides the following features:

• Search For All References — Lists all references to the local variable
in the Search pane. The software also supports this feature for global
variables, functions, types, and classes.

• Go To Definition — Takes you to the line of code that contains the
declaration of the local variable. The software also supports this feature for
functions, types, and classes. Previously, this feature was available only
for global variables.

For more information, see Exploring Results Manager Perspective.

Variable values in tooltips
The display of variable values in Source view tooltips is improved, providing
information that narrows the range of the variable. For example, the tooltip
might indicate whether the variable values are multiples of a number. The
following table has examples of how tooltips display variable range values.

22

http://www.mathworks.com/help/releases/R2012b/polyspace_c/c_ug/viewing-coding-rules-checker-results.html#bso9e2d-1
http://www.mathworks.com/help/releases/R2012b/polyspace_c/c_ug/viewing-coding-rules-checker-results.html#bthncw1
http://www.mathworks.com/help/releases/R2012b/polyspace_c/c_ug/viewing-coding-rules-checker-results.html#bthncw1
http://www.mathworks.com/help/releases/R2012b/polyspace_c/c_ug/tracking-review-progress.html#brz384r-18
http://www.mathworks.com/help/releases/R2012b/polyspace_c/c_ug/opening-verification-results.html#brz384r-9

Review of verification results improvement

Previously R2012b

0 or 2 or 4 or [6 ..
2147483642 (0x7FFFFFFA)]

even values in [0 ..
2147483642 (0x7FFFFFFA)]

[-56 ..110] or [112 .. 166] even values in [-56 .. 166]

[-1265 .. -46] or -23 or 0 multiples of 23 in [-1265 ..
0]

[0 .. 22] or 44 0 or 22 or 44

You might also see other new types of tooltips, for example:

• For variables:

- 1008 or 4800 or 14400 or 23040 (values are multiples of 48)

• For variable pointers:

- points to 2 bytes at offset multiple of 8 in [0 .. 64]

- points to 4 bytes at an even offset in [0 .. 20]

- points to 4 bytes at offset 0 or 8 or 24 or 72 (offset is
multiple of 8)

This enhancement might affect the contents of the text file
Your_Project_Variable_View.txt file, which your verification generates in
the \results\Polyspace-Doc folder. Instead of only an interval list for a
variable, you might see, for example, the following conventions in the file:

• multiples of (a constant) in (the interval list)

• even values in (the interval list)

• odd values in (the interval list)

Loop information in tooltips
In the Results Manager Source view, the software provides a tooltip for the
loop tokens for and while. The tooltip indicates whether the loop terminates.
Consider the following code:

23

R2012b

int foo1(int random) {

int i;

for (i=0; i!=50; i++) {

if (random)

i=51;

}

return i;

}

If you place your cursor over for, you see the following tooltip:

Consider another example:

void foo2(void) {

int i;

for (i=0; ; i++);

}

In this case, the tooltip indicates that the code might produce a run-time error.

Previously, the software could provide information about the maximum
number of iterations in a loop through the loop counter tooltip. But this
information did not necessarily indicate whether the loop would terminate.

24

Accuracy improvements for MISRA rules checking

Accuracy improvements for MISRA rules checking
Compatibility Considerations: Yes

For rule 5.7, the rule checker does not report a violation when:

• Different functions have parameters with the same name.

• Different functions have local variables with the same name.

• A function has a local variable that has the same name as a parameter
of another function.

Consider the following code:

1 int foo(int param) {

2 int result;

3 return result;

4 }

5

6 short bar (float param)

7 short result;

8 return result;

}

In the function bar, param and result (line 7) do not generate violations of
rule 5.7.

For rules 10.1 and 10.2, the rule checker does not report violations when an
implicit conversion is valid and does not change the representation of the
value. Consider the following code:

1 typedef unsigned short uint16;

2 typedef unsigned int uint32;

3

4 uint32 var = 0;

5

6 uint32 foo(void) {

7 uint16 result;

8 result = result + 1;

9 return result;

10 }

25

R2012b

Lines 4, 8, and 9 do not generate violations of rule 10.1.

For rules 9.1 and 21.1, the software performs additional post-compilation
processing for rule checking.

Compatibility Considerations

Due to changes in the coding rules checker, the number of coding rule
violations might change when compared to previous versions of the software.

26

Definition of custom coding rules

Definition of custom coding rules

You can now define custom coding rules. You can verify that your code
complies with these rules by using the Polyspace coding rules checker.

You can check names or text patterns in your source code with reference to
custom rules in a text file. You create the text file manually or through the
Polyspace verification environment.

Each rule in the text file specifies a pattern in the form of a regular expression.
The software compares the pattern against identifiers in the source code
and determines whether the custom rule is violated. For each violation, the
software generates a warning or error message in the verification log.

For more information, see Create a Custom Coding Rules File and Activate
Custom Rules Checker.

27

http://www.mathworks.com/help/releases/R2012b/polyspace_c/c_ug/setting-up-coding-rules-checking.html#btkorm4
http://www.mathworks.com/help/releases/R2012b/polyspace_c/c_ug/setting-up-coding-rules-checking.html#btkordf
http://www.mathworks.com/help/releases/R2012b/polyspace_c/c_ug/setting-up-coding-rules-checking.html#btkordf

R2012b

Configuration of C/C++ rule checking

R2012b provides:

• A new option, -misra-ac-agc, with values OBL-rules, OBL-REC-rules,
all-rules, SQO-subset1, SQO-subset2, and custom. The first three values
allow you to specify checking of obligatory, obligatory and recommended,
and all rules specified by MISRA AC AGC Guidelines for the Application
of MISRA-C:2004 in the Context of Automatic Code Generation. The other
values allow you to check MISRA AC AGC rules that affect selectivity
and custom rules that you define.

• The updated option -misra2, which allows you to specify checking of
required MISRA C coding rules. The option value AC-AGC-OBL-subset is
no longer supported.

• The updated option -misra-cpp, with values required-rules, all-rules,
SQO-subset1, SQO-subset2, and custom. These values allow you to specify
checking of required MISRA C++ rules, all MISRA rules, MISRA rules that
affect selectivity, and custom rules that you define.

• The updated option -jsf-coding-rules with values shall-rules,
shall-will-rules, all-rules, and custom. These values allow you to
specify checking of JSF C++ Shall, Will, and Should rules and custom
rules that you define.

For more information, see Coding Rules Setup and Coding Rules & Code
Complexity Metrics.

28

http://www.mathworks.com/help/releases/R2012b/polyspace_c/coding-rules-setup.html
http://www.mathworks.com/help/releases/R2012b/polyspace_c/compliance-with-standards.html
http://www.mathworks.com/help/releases/R2012b/polyspace_c/compliance-with-standards.html

Reorganized Configuration pane

Reorganized Configuration pane

The Project Manager perspective of the Polyspace verification environment
provides a reorganized Configuration pane that allows improved
management of verification options.

The configuration process for code verification consists of different parts, for
example, specifying your target environment and compiler behavior. The
Configuration pane contains a tree with nodes that represent different parts
of the configuration process. For example, to choose your target environment
and compiler, select the Target & Compiler node and then specify your
options.

The following options have been removed.

29

R2012b

Name in Configuration
pane

Command line What happens in R2012b

Allow non int types for
bitfields

-allow-non-int-bitfield If source code contains
bitfield types that are not
int, verification does not stop.

Allow undefined global
variables

-allow-undef-variables If linkage errors due to
undefined global variables
occur, verification does not
stop.

Allow anonymous
unions/structure fields

-allow-unnamed-fields If source code contains
unnamed fields within
structures and unions,
verification does not stop.

Ignore missing header files -ignore-missing-headers If some include header files are
missing, Polyspace generates
a warning but tries to continue
compiling.

Stub complex functions -permissive-stubber If Polyspace cannot stub
complex functions with
parameters and return types
that are function pointers,
verification does not stop.

Ignore assembly code -discard-asm If source code contains
assembler code, verification
does not stop.

Accept integral type
conflicts

-permissive-link Verification allows integer
type conflicts between
declarations and definitions
for arguments and return
values of functions.

In addition, you can specify the following options from the command line or
through the Configuration > Machine Configuration > Non-official
options field.

30

Reorganized Configuration pane

Available from command line Removed from Configuration
pane

-less-range-information Less range information

-no-pointer-information No pointer information

-keep-all-files Keep all preliminary results files

-known-NTC Functions known to cause NTC

-asm-begin -asm-end Handle #pragma asm/endasm
directives

-strict Strict

-permissive Permissive

-Wall Give all warnings

31

R2012b

Code verification for very large applications

If the source code within your project represents a single application, you
might want to verify all the code together. However, if the application is
extremely large, the verification might take days.

Polyspace now provides a feature that allows you to:

• Partition a large application into modules that individually require less
time to verify.

• Specify the number of modules in a trade-off between verification speed
and precision.

For more information, see Code Verification for Large Applications.

32

http://www.mathworks.com/help/releases/R2012b/polyspace_c/code-verification-for-large-applications.html

Report content filtering

Report content filtering

Previously, you used the MATLAB® Report Generator™ software to apply
filters to report templates through only the Run-time Check Details
Ordered by Color/File component. The software provides a new component,
Report Customization (Filtering), which allows you to apply filters from
any point of the report hierarchy.

For more information, see Customize Verification Reports.

33

http://www.mathworks.com/help/releases/R2012b/polyspace_c/c_ug/generating-reports-of-verification-results.html#bs6zafv-1

R2012b

Parent folder for verification results

You can now specify a parent folder for your verification results through the
Project and result folder tab of the Polyspace Preferences dialog box. If you
do not specify a parent folder, the software uses the active module folder as
the parent folder. For more information, see Specify Parent Folder for Results.

34

http://www.mathworks.com/help/releases/R2012b/polyspace_c/c_ug/creating-a-project.html#br02rd8-1

Support for relative paths

Support for relative paths

The Polyspace Project Manager now supports relative paths outside the
project hierarchy. For example, paths for source files in a folder above the
project location. Previously, relative paths were supported only for subfolders
of the project.

Absolute paths are still supported.

35

R2012b

Macro expansion in source code view

You can now view the contents of source code macros in the source code view.
A new code information bar displays M icons that identify source code lines
with macros.

When you click a line with this icon, the software displays the contents of
macros on that line.

If you click the line away from the shaded region, the software displays the
normal source code again.

In the Results Explorer or Results Summary views, if you select a check,
the software displays the expanded macro in the source code view.

The expanded macro supports tooltips and checks like any other source code
line.

If you right-click any point within the source code view, the context menu has
options to display or hide the content of all macros.

36

Macro expansion in source code view

Note Previously, you viewed the contents of a macro in the Expanded
Source Code view. This view is no longer available.

37

R2012b

Modifying or removing generic targets

In addition to creating new generic targets, you can now use the Generic
target options dialog box to view, modify, or delete generic targets. For more
information, see Set Up a Target.

Previously, you modified or deleted generic targets through the Generic
targets tab in the Polyspace Preferences dialog box. This tab is no longer
available.

38

http://www.mathworks.com/help/releases/R2012b/polyspace_c/c_ug/setting-up-a-target.html

Improved COR check for function pointer

Improved COR check for function pointer
Compatibility Considerations: Yes

The correctness COR checks that the software performs on function pointers
is improved. The following table describes what the software now generates
for these checks.

Function pointer scenario Color of
check

Information displayed in Results Manager
perspective

Points to valid function Green
Function pointer points to a valid function

pointer is not null

function called: foo

NULL function pointer Red
Function pointer does not point to a valid function

pointer is null

Points to no function Red
Function pointer does not point to a valid function

pointer is not null

pointer does not point to any function

Points to badly typed function
(number or types of arguments
in function call are not
compatible with function
definition)

Red
Function pointer does not point to a valid function

pointer is not null

pointer points to badly-typed function: foo

- error when calling function foo: wrong number of

arguments (call has 1 but function expects 0)

May be NULL Orange
Function pointer may not point to a valid function

pointer may be null

if pointer is not null, function called: foo

39

R2012b

Function pointer scenario Color of
check

Information displayed in Results Manager
perspective

May not point to valid
function. Polyspace suggests
well-typed functions that may
be called through pointer.

Orange
Function pointer may not point to a valid function

pointer is not null

functions that may be called: {foo, bar}

pointer may have become invalid and point

to no valid function

May point to badly typed
functions

Orange
Function pointer may not point to a valid function

pointer is not null

functions that may be called: {foo, bar}

pointer may point to badly-typed function: {f1, f2, f3}

- error if function f1 is called: wrong number of

arguments (call has 1 but function expects 0)

- error if function f2 is called: wrong type of

argument (argument 2 of call has type int but

function expects type float)

- error if function f3 is called: wrong type of

returned value (function returns type int but

call expects type float)

May point to many badly
typed functions

Orange
Function pointer may not point to a valid function

pointer is not null

functions that may be called: {foo, bar}

pointer may point to badly-typed function: {f1, f2,

f3, ...}

- error if function f1 is called: wrong number of

arguments (call has 1 but function expects 0)

- error if function f2 is called: wrong type of

argument (argument 2 of call has type int but

function expects type float)

- error if function f3 is called: wrong type of

returned value (function returns type int but call

expects type float)

40

Improved COR check for function pointer

Compatibility Considerations

Previously, a function pointer might generate multiple orange COR checks,
for example, a check for wrong type for argument, a check for wrong number
of arguments, and a check for wrong return type. Now, the software generates
a single check but provides the same information in the Check Details pane.
As a result of this improvement, you might observe fewer orange checks
compared to previous versions of the software.

41

R2012b

Permissive function pointer calls
Compatibility Considerations: Yes

By default, Polyspace allows a function pointer to call a function only if both
the function pointer and function types are identical. For example, a function
with type

int f(int*)

cannot not be called by a function pointer of type

int fptr(void*)

To allow calls where the function pointer and function types are not identical,
you must specify the new option -permissive-function-pointer.

Note With applications that use function pointers extensively, this option
can cause a significant loss in performance and a higher number of orange
checks as Polyspace has to consider more execution paths.

Previously, the software was permissive by default, allowing calls where
function pointer and function types were not identical.

Compatibility Considerations

The default behaviour has changed. If your code contains function pointers
that call functions with types that are not identical to those of the function
pointers, you might see more red COR checks compared to previous versions
of the software. In the verification log, you might see the following message:

Warning: -permissive-function-pointer option may be useful

If you select one of the new red COR checks, in the Check Details pane, you
might see information like the following:

pointer points to badly typed function: foo

- error when calling function foo: wrong type of argument (argument n

of call has type pointer to void but function expects type pointer to data type)

To work around function pointer incompatibility, rerun verification with

42

Permissive function pointer calls

option -permissive-function-pointer.

To return to previous behavior, specify the new option
-permissive-function-pointer and rerun your verification.

43

R2012b

Enhanced stub generation for Standard Library
functions (C)

Previously, if there was a mismatch between your declaration of a standard
function and the actual standard function, and you did not use the
-D__polyspace_no_function_name to resolve the mismatch, then verification
generated a compilation error. For example, if you declared:

void memset (void * ptr, unsigned int value, size_t num);

instead of:

void * memset (void * ptr, int value, size_t num);

the conflict between your declaration and the Polyspace function definition
produced a compilation error.

For this example, if your Include folders contain the standard header files,
stdio.h and string.h, the verification recognizes your declaration and does
not produce a compilation error. To suppress this feature, specify the option
-D__polyspace_static_types_for_stubs.

If your Include folders do not contain the files stdio.h and
string.h, you can activate the feature with the option -D
__polyspace_adapt_types_for_stubs.

For more information, see Stubs of libc Functions.

44

http://www.mathworks.com/help/releases/R2012b/polyspace_c/c_ug/preparing-code-for-built-in-functions.html#bs488y1-3

Intermediate verification level support

Intermediate verification level support

From the Polyspace verification environment, you can no longer specify the
following values for the option -to:

• c-to-il or C to Intermediate Language — If this value is specified in
a project configuration file (.cfg), the software replaces the value with
c-compile or C Source Compliance Checking.

• cpp-normalize or C++ source normalization— If this value is specified
in a project configuration file (.cfg), the software replaces the value with
cpp-compliance or C++ source compliance checking.

• cpp-link or C++ Link— If this value is specified in a project configuration
file (.cfg), the software replaces the value with cpp-compliance or C++
source compliance checking.

• cpp-to-il or C++ to Intermediate Language— If this value is specified
in a project configuration file (.cfg), the software replaces the value with
cpp-compliance or C++ source compliance checking.

From the command line, you can still specify these values (C to
Intermediate Language, C++ source normalization, C++ Link, and C++
to Intermediate Language) for the option -to.

45

R2012b

Analysis of public methods called by generated main

Previously, when you specified the values all, inherited-all, unused, and
inherited-unused for the option -class-analyzer-calls, the software
analyzed both public and protected methods called by the generated main.
Now, this option supports four additional values that restrict the analysis to
public methods:

• all-public— The generated main calls all public methods of the specified
classes but does not call protected methods.

• inherited-all-public— The generated main calls all public methods of
the specified classes and the parents of these classes.

• unused-public—With the exception of protected methods, the generated
main calls all methods that are not called within the specified classes.

• inherited-unused-public— The generated main calls all public methods
that:

- Belong to the specified classes and their parents.

- Are not called by another method.

For more information, see Methods to call within the specified classes.

46

http://www.mathworks.com/help/releases/R2012b/polyspace_c/c_ref/verification-mode.html#brlhc8t

DRS file generation for unit-by-unit verification

DRS file generation for unit-by-unit verification

Previously, you could not automatically generate a single data range
specification (DRS) file if your project was configured for a -unit-by-unit
verification. Now, if the option -unit-by-unit is enabled, you can generate
a single DRS file containing values that represent the union of DRS values
generated for each unit.

Note The DRS file generation functionality is not supported for C++.

For more information, see Data Range Configuration.

47

http://www.mathworks.com/help/releases/R2012b/polyspace_c/data-range-configuration.html

R2012b

Comments for generated DRS files

When you use the Polyspace DRS Configuration dialog box to edit a DRS
configuration file, you can enter comments. For example, you can enter
comments to justify the values that you specify.

For more information, see Data Range Configuration.

48

http://www.mathworks.com/help/releases/R2012b/polyspace_c/data-range-configuration.html

Automatic import of comments and justifications

Automatic import of comments and justifications

You can specify the batch option -import-comments
polyspace_results_folder_path to automatically import comments and
justifications from a previous verification. For more information, see Batch
Options.

49

http://www.mathworks.com/help/releases/R2012b/polyspace_c/batch-options.html
http://www.mathworks.com/help/releases/R2012b/polyspace_c/batch-options.html

R2012b

Storage of temporary files

If you specify the new option -tmp-dir-in-results-dir, Polyspace does not
use the standard /tmp or C:\Temp folder to store temporary files. Instead,
Polyspace uses a subfolder of the results folder. If the results folder is
mounted on a network drive, this action might affect processing speed. Use
this option only when the temporary folder partition is not large enough and
troubleshooting is required.

For more information, see Batch Options

50

http://www.mathworks.com/help/releases/R2012b/polyspace_c/batch-options.html

Changes to verification results

Changes to verification results
Compatibility Considerations: Yes

Compatibility Considerations

Verification results might change when compared to previous versions of the
software. Some checks might change color, and the Selectivity rate of your
results might change.

COR check
See:

• “Improved COR check for function pointer” on page 39

• “Permissive function pointer calls” on page 42

51

R2012b

Changes to coding rules checker results
Compatibility Considerations: Yes

Compatibility Considerations

Due to changes in the coding rules checker, the number of coding rule
violations might change when compared to previous versions of the software.

MISRA-C rule improvements
R2012b provides enhanced support, which includes bug fixes, for the following
rules:

• Rules 5.5 and 5.7

• Rules 6.1, 6.4, and 6.5

• Rules 8.3 and 8.4

• Rule 9.1

• Rules 10.1 and 10.2

• Rule 11.1

• Rule 12.12

• Rule 16.9

• Rules 17.1, 17.2, and 17.3

• Rule 19.9

• Rule 21.1

See “Accuracy improvements for MISRA rules checking” on page 25.

52

Removal of Polyspace in One Click

Removal of Polyspace in One Click

The Polyspace in One Click feature will be removed in a future release.

53

R2012b

Changes to analysis options

New options
Option For more information, see ...

-import-comments “Automatic import of comments and
justifications” on page 49

-misra-ac-agc “Configuration of C/C++ rule checking” on page
28

-permissive-function-pointer “Permissive function pointer calls” on page 42

-tmp-dir-in-results-dir “Storage of temporary files” on page 50

Changes to existing options
Analysis options have been reorganized in the Project Manager. See
“Reorganized Configuration pane” on page 29.

Project Manager perspectiveOption

Previous
label

R2012b label Location
on R2012b
Configuration
pane

Language
Supported

See also
...

-automatic-orange-
testers-test-timeout

Maximum
test time

Unchanged Post
Verification

C

-add-to-results-
repository

Add
automatically
to results
repository

Add to results
repository

Machine
Configuration

C/C++

-align [8|16|32] Generic target
options dialog box,
through Target
& Compiler

C/C++

54

Changes to analysis options

Project Manager perspectiveOption

Previous
label

R2012b label Location
on R2012b
Configuration
pane

Language
Supported

See also
...

-allowed-pragma Allowed
pragmas

Unchanged Coding Rules &
Code Metrics

C

-allow-language-
extensions

Allow
language
extensions

Unchanged Target &
Compiler

C

-allow-negative-
operand-in-shift

Allow
negative
operand for
left shifts

Unchanged Verification
Assumptions >
Checks
Behavior

C/C++

-allow-ptr-arith-on-
struct

Enable
pointer
arithmetic
out of
bounds of
fields

Unchanged Verification
Assumptions >
Checks
Behavior

C

-asm-begin -
asm-end

Handle
#pragma
asm/endasm
directives

Command line
only

-automatic-orange-
tester

Automatic
orange
tester

Unchanged Post
Verification

C

-automatic-orange-
testers-loop-max-
iteration

Maximum
loop
iterations

Unchanged Post
Verification

C

-automatic-orange-
testers-tests-
number

Number of
automatic
tests

Unchanged Post
Verification

C

55

R2012b

Project Manager perspectiveOption

Previous
label

R2012b label Location
on R2012b
Configuration
pane

Language
Supported

See also
...

-big-endian Generic target
options dialog box,
through Target
& Compiler

C/C++

-boolean-types Effective
Boolean
types

Unchanged Coding Rules &
Code Metrics

C

-char-is-16bits Generic target
options dialog box,
through Target
& Compiler

C/C++

-class-analyzer Class name Unchanged Verification
Mode

C++

-class-analyzer-
calls

Select
methods
called by the
generated
main

Methods to
call within
the specified
classes

Verification
Mode

C++ “Analysis
of public
methods
called by
generated
main” on
page 46

-class-only Analyze
the class
content only

Unchanged Verification
Mode

C++

-code-metrics Calculate
code metrics

Calculate
code
complexity
metrics

Coding Rules &
Code Metrics

C/C++

-context-sensitivity Sensitivity
context

Unchanged Precision C/C++

56

Changes to analysis options

Project Manager perspectiveOption

Previous
label

R2012b label Location
on R2012b
Configuration
pane

Language
Supported

See also
...

-context-sensitivity-
auto

Automatic
selection for
sensitivity
context

Sensitivity
context

Precision C/C++

-continue-with-
compile-error

Continue
with
compile
error

Unchanged Target &
Compiler >
Environment
Settings

C/C++

-critical-section-
begin/end

Critical
section
details

Unchanged Verification
Mode

C/C++

-custom-rules Check
custom rules

Coding Rules &
Code Metrics

C/C++

-D Defined
Preprocessor
Macros

Preprocessor
definitions

Targets &
Compler >
Macros

C/C++

-data-range-
specifications

Variable/
function
range setup

Unchanged Verification
Mode > Inputs
& Stubbing

C/C++

-default-sign-of-
char

Signed Generic target
options dialog box,
through Target
& Compiler

C/C++

-dialect Dialect Target &
Compiler

C/C++

-div-round-down Division
round down

Unchanged Target &
Compiler

C

57

R2012b

Project Manager perspectiveOption

Previous
label

R2012b label Location
on R2012b
Configuration
pane

Language
Supported

See also
...

-dos Disk
operating
system

Code from
DOS or
Windows file
system

Target &
Compiler >
Environment
Settings

C/C++

-double-is-64bits Generic target
options dialog box,
through Target
& Compiler

C/C++

-entry-points Entry
points or
interruption

Entry points Verification
Mode

C/C++

-enum-type-
definition

Enum type
definition

Unchanged Target &
Compiler

C/C++

-extra-flags Other Non-official
options

Machine
Configuration

C/C++

-for-loop-index-
scope

Management
of scope of
’for loop’
variable
index

Unchanged Target &
Compiler

C++

-functions-called-
after-loop

Functions
called after
loop

Termination
functions
— Polyspace
Model Link™
SL only

Verification
Mode

C

-functions-called-
before-loop

Functions
called
before loop

Initialization
functions
— Polyspace
Model Link SL
only

Verification
Mode

C

58

Changes to analysis options

Project Manager perspectiveOption

Previous
label

R2012b label Location
on R2012b
Configuration
pane

Language
Supported

See also
...

-functions-called-
before-main

First
functions
called

Initialization
functions/
methods

Verification
Mode

C/C++

-functions-called-
in-loop

Functions
called in
loop

Cyclic
functions
— Polyspace
Model Link SL
only

Verification
Mode

C

-functions-to-stub Functions to
stub

Unchanged Verification
Mode > Inputs
& Stubbing

C/C++

-green-absolute-
address-checks

Green
absolute
address
checks

Unchanged Verification
Assumptions

C/C++

-I Include
folders

Target &
Compiler >
Environment
Settings

C/C++

-ignore-constant-
overflows

Ignore
overflowing
computations
on constants

Unchanged Verification
Assumptions >
Checks
Behavior

C/C++

-ignore-float-
rounding

Ignore float
rounding

Unchanged Verification
Assumptions

C/C++

-ignore-pragma-
pack

Ignore
pragma
pack
directives

Unchanged Target &
Compiler

C++

59

R2012b

Project Manager perspectiveOption

Previous
label

R2012b label Location
on R2012b
Configuration
pane

Language
Supported

See also
...

-import-dir Import
folder

Unchanged Target &
Compiler

C++

-include Include Unchanged Target &
Compiler >
Environment
Settings

C/C++

-includes-to-ignore Files and
folders to
ignore

Coding Rules &
Code Metrics

C/C++

-inline Inline Unchanged Precision >
Scaling

C/C++

-int-is-32bits Generic target
options dialog box,
through Target
& Compiler

C/C++

-jsf-coding-rules JSF C++
rules
configuration

Check JSF
C++ rules

Coding Rules &
Code Metrics

C++

-k-limiting Depth of
verification
inside
structures

Unchanged Precision >
Scaling

C/C++

-keep-all-files Keep all
preliminary
results files

Command line
only

-known-NTC Functions
known to
cause NTC

Command line
only

60

Changes to analysis options

Project Manager perspectiveOption

Previous
label

R2012b label Location
on R2012b
Configuration
pane

Language
Supported

See also
...

-less-range-
information

Less range
information

Command line
only

-lightweight-
thread-model

Reduce task
compexity

Unchanged Precision >
Scaling

C

-little-endian Endianness Unchanged Target &
Compiler

C/C++

-logical-signed-
right-shift

Signed right
shift

Target &
Compiler

C

-long-is-32bits Generic target
options dialog box,
through Target
& Compiler

-long-is-64bits Generic target
options dialog box,
through Target
& Compiler

C/C++

-long-long-is-
64bits

Generic target
options dialog box,
through Target
& Compiler

C/C++

-machine-
architecture

Run
verification
in 32 or
64-bit mode

Unchanged Machine
Configuration

C/C++

-main Visual
Studio
compliant
main

Main entry
point

Verification
Mode

C++

61

R2012b

Project Manager perspectiveOption

Previous
label

R2012b label Location
on R2012b
Configuration
pane

Language
Supported

See also
...

-main-generator Generate a
main

Verify
module

Verification
Mode

C/C++

-main-generator-
calls

Functions
called

Functions to
call

Verification
Mode

C/C++

-main-generator-
writes-variables

Write
accesses
to global
variables

Variables to
initialize

Verification
Mode

C/C++

-max-processes Number of
processes
for multiple
core system

Unchanged Machine
Configuration

C/C++

-misra2 MISRA
C rules
configuration

CheckMISRA
C rules

Coding Rules &
Code Metrics

C “Configuration
of C/C++
rule
checking”
on page 28

-misra-cpp MISRA
C++ rules
configuration

CheckMISRA
C++ rules

Coding Rules &
Code Metrics

C++ “Configuration
of C/C++
rule
checking”
on page 28

-modules-precision Specific
precision

Unchanged Precision C

-no-automatic-
stubbing

No
automatic
stubbing

Unchanged Verification
Mode > Inputs
& Stubbing

C++

-no-constructors-
init-check

Don’t check
members
initialization

Skip
members
initialization

Verification
Mode

C++

62

Changes to analysis options

Project Manager perspectiveOption

Previous
label

R2012b label Location
on R2012b
Configuration
pane

Language
Supported

See also
...

-no-def-init-glob Do not
consider
all global
variables
to be
initialized

Ignore
default
initialization
of global
variables

Verification
Mode > Inputs
& Stubbing

C

-no-extern-C Overcome
link error

Unchanged Target &
Compiler >
Environment
Settings

C++

-no-fold Optimize
huge static
initializers

Unchanged Precision >
Scaling

C

-no-pointer-
information

No pointer
information

Command line
only

C/C++

-no-stl-stubs No STL
stubs

Unchanged Verification
Mode > Inputs
& Stubbing

C++

-O Precision
Level

Precision
level

Precision C/C++

-OS-target Target
operating
system

Unchanged Target &
Compiler

C/C++

-pack-alignment-
value

Pack
alignment
value

Unchanged Target &
Compiler

C++

-path-sensitivity-
delta

Improve
Precision of
interprocedural
analysis

Unchanged Precision C/C++

63

R2012b

Project Manager perspectiveOption

Previous
label

R2012b label Location
on R2012b
Configuration
pane

Language
Supported

See also
...

-permissive Permissive Command line
only

-pointer-is-24bits Generic target
options dialog box,
through Target
& Compiler

C/C++

-pointer-is-32bits Generic target
options dialog box,
through Target
& Compiler

C/C++

-post-analysis-
command

Command
to apply
after the
end of the
verification

Unchanged Post
Verification

C/C++

-post-preprocessing-
command

Command/
script to
apply to
preprocessed
files

Unchanged Target &
Compiler >
Environment
Settings

C/C++

-report-output-
format

Report
output
format

Output
format

Reporting C/C++

-report-template Report
template

Report
template
name

Reporting C/C++

64

Changes to analysis options

Project Manager perspectiveOption

Previous
label

R2012b label Location
on R2012b
Configuration
pane

Language
Supported

See also
...

-respect-types-in-
fields

Respect types
in fields

Verification
Assumptions

C/C++

-respect-types-in-
globals

Respect types
in global
variables

Verification
Assumptions

C/C++

-retype-int-pointer Retype
symbols
of integer
types

Unchanged Precision C

-retype-pointer Retype
variables
of pointer
types

Unchanged Precision C

-scalar-overflows-
behavior

Overflows
computation
mode

Unchanged Verification
Assumptions >
Checks
Behavior

C/C++

-scalar-overflows-
check

Detect
overflows
on

Unchanged Verification
Assumptions >
Checks
Behavior

C/C++

-server Send to
Polyspace
Server

Unchanged Machine
Configuration

C/C++

-sfr-types Sfr type
support

Unchanged Target &
Compiler

C

65

R2012b

Project Manager perspectiveOption

Previous
label

R2012b label Location
on R2012b
Configuration
pane

Language
Supported

See also
...

-short-is-8bits Generic target
options dialog box,
through Target
& Compiler

C/C++

-short-long-is-24bits Generic target
options dialog box,
through Target
& Compiler

C/C++

-size-in-bytes Allow
incomplete
or partial
allocation of
structures

Unchanged Verification
Assumptions >
Checks
Behavior

C

-size-t-is-unsigned-
long

Set size_t
to unsigned
long

Unchanged Target &
Compiler

C++

-strict Strict Command line
only

-support-FX-option-
results

Support
managed
extensions

Unchanged Target &
Compiler

C++

-target Target
processor
type

Unchanged Target &
Compiler

C/C++

-temporal-
exclusions-file

Temporal
exclusion
point

Temporally
exclusive
tasks

Verification
Mode

C/C++

-timeout Verification
time limit

Unchanged Precision C/C++

66

Changes to analysis options

Project Manager perspectiveOption

Previous
label

R2012b label Location
on R2012b
Configuration
pane

Language
Supported

See also
...

-to To end of Verification
level

Precision C/C++ “Intermediate
verification
level
support” on
page 45

-U Undefined
Preprocessor
Macros

Undefine
preprocessor
definitions

Targets &
Compler >
Macros

C/C++

-unit-by-unit Run a
verification
unit by unit

Run unit
by unit
verification

Verification
Mode

C/C++

-unit-by-unit-
common-source

Unit by unit
common
source files

Unchanged Verification
Mode

C/C++

-variables-written-
before-loop

Variables
written
before loop

Calibration
variables
— Polyspace
Model Link SL
only

Verification
Mode

C

-variables-written-
in-loop

Variables
written in
loop

Input
variables
— Polyspace
Model Link SL
only

Verification
Mode

C

-Wall Give all
warnings

Command line
only

C/C++

67

R2012b

Project Manager perspectiveOption

Previous
label

R2012b label Location
on R2012b
Configuration
pane

Language
Supported

See also
...

-wchar-t-is Management
of w_char_t

Unchanged Target &
Compiler

C++

-wchar-t-is-
unsigned-long

Set wchar_t
to unsigned
long

Unchanged Target &
Compiler

C++

68

Options removed

Options removed

The following options have been removed:

• -allow-non-int-bitfield

• -allow-undef-variables

• -allow-unnamed-fields

• -ignore-missing-headers

• -permissive-stubber

• -discard-asm

• -permissive-link

For more information, see “Reorganized Configuration pane” on page 29.

69

R2012b

Polyspace Server for C/C++ Product

70

Password-protected access to projects in Polyspace Metrics

Password-protected access to projects in Polyspace
Metrics

You can now restrict access to a project by specifying a password:

• When you run a verification with Polyspace Metrics enabled or upload
results to the Polyspace Metrics repository.

• After the creation of a project.

For more information, see Protect Access to Project Metrics.

71

http://www.mathworks.com/help/releases/R2012b/polyspace_c/c_ug/accessing-polyspace-metrics.html#btmds_f

R2012b

Metrics for level 0 potential errors

Polyspace Metrics now provides metrics for level 0 orange checks, which are
potential errors. On the Run-Time Checks tab, under Other Run-Time
Errors (Orange Checks), the software displays values in the following
new columns:

• Path-Related Issues — Potential errors that are path-related and not
dependent on input values.

• Bounded Input Issues— Potential errors that are related to input values
bounded by data range specifications (DRS).

• Unbounded Input Issues — Potential errors that are related to
unbounded input values.

You can now hide or display individual columns. For example:

1 Right-click the column heading Path-Related Issues.

2 Clear the check boxes for the columns that you do not want to display.
The software hides these columns.

Note This feature supports verification results produced by R2012a.
However, if you uploaded your results using Polyspace Metrics R2012a and
then upgraded to R2012b, the new columns do not display values. To see
values in the new columns, you must upload the verification results again.

72

R2012a
Version: 8.3
New Features: Yes
Bug Fixes: Yes

73

R2012a

Polyspace Client for C/C++ Product

74

Single Perspective for Coding Rule Violations and Run-Time Checks

Single Perspective for Coding Rule Violations and
Run-Time Checks

The software now provides, by default, a single Results Manager perspective
for coding rule violations and run-time checks.

This single perspective provides the following benefits:

• Easier review of coding rule violations due to better navigation and display
functionality, which previously were available for only run-time checks.

• Viewing of coding rules violations with run-time checks, which facilitates
analysis of some run-time checks.

You can revert to the previous display format with separate perspectives for
Coding Rules and Run-Time Checks:

1 In the Polyspace verification environment, select the
Options > Preferences > Miscellaneous tab.

2 Select the Show coding rule violations and run-time checks as
separate perspectives check box.

3 Click OK. The software displays a message asking you to restart Polyspace
for the change to take effect.

For more information, see Examining Rule Violations.

75

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br2lc9n-11.html#bso9e2d-1

R2012a

Compilation Environment Templates

Polyspace software now provides predefined compilation environment
templates to help you configure verification projects.

These templates automatically set analysis options for the selected compiler,
and help you locate the required include folders.

When creating a new project, you can select a template for your compiler.

For more information, see Creating a Project.

Predefined Templates
Predefined C templates are available for:

76

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br0l5ad-5.html

Compilation Environment Templates

• Baseline C – Generic C application targeting the i386 architecture

• Cosmic – Cosmic C compiler

• IAR – IAR compiler

• Keil – Keil compiler

• VxWorks5.x i386 – VxWorks 5.x compiler targeting an i386 architecture

• VxWorks6.x i386 – VxWorks 6.x compiler targeting an i386 architecture

Predefined C++ templates are available for:

• Baseline C++ – Generic C++ application targeting the i386 architecture

• Visual8.0 i386 – C++ Visual 8.0 application and the i386 target

• Visual8.0 x86_64 – C++ Visual 8.0 application and the x86_64 target

• Visual9.0 i386 – C++ Visual 9.0 application and the i386 target

• Visual9.0 x86_64 – C++ Visual 9.0 application and the x86_64 target

Custom Templates
You can also create custom templates from existing Project configurations,
and use them to configure future projects.

For more information, see Creating Custom Project Templates.

77

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br0l5ad-5.html#btd2o3u

R2012a

Suppression of NTC, NTL and UNR Checks Caused
by Red Checks
Compatibility Considerations: Yes

Previously, the software would generate red NTC and NTL checks that were a
consequence of other red checks. Now, the software does not generate these
red checks. However, the software still gives the information that these
red checks provided. The software highlights the corresponding call or loop
identifier by applying a dashed underline to the identifier.

If the cause of the problem is known, the software provides this information
in a tooltip for the underlined call or loop identifier. In addition, when you
right-click the identifier, the context menu provides a Go to Cause item.
Selecting this item takes you to the red check that is the cause.

The software:

• Does not generate gray UNR checks if the cause is a red check

• Still generates red NTC, NTL, and K-NTC checks for a call or loop identifier
if the corresponding code contains orange checks.

• Does not generate NTC checks for the functions exit() and abort(), but
provides tooltips for these functions. For example, exit(), which does not
correspond to an error, terminates the program.

Consider the following code.

1 int divide(int x, int y) {

2 return x / y;

3 }

4

5 int f(void) {

6 int result;

7 result = divide(4, 0);

8 return result;

9 }

In R2011b, verification of this code produced the following:

78

Suppression of NTC, NTL and UNR Checks Caused by Red Checks

The red NTC check for the call of the function divide (line 7) was a
consequence of the red ZDV check for the division operator / (line2).

In R2012a, verification of the same code produces the following:

The software does not generate an NTC check, but underlines divide. In
addition, the tooltip provides information about the problem. If you right-click
divide and select Go to Cause from the context menu, the software takes
you to the division operator. This operator has a red ZDV check.

79

R2012a

Compatibility Considerations

As a result of this new feature, you might observe a significant reduction in
the total number of red and gray checks when compared to previous versions
of the software.

80

Probable Cause Information About Red and Orange Checks

Probable Cause Information About Red and Orange
Checks

With some red and orange checks, the software now provides information
about the probable cause of the check. At a certain point in the code, a value
is generated that results in a red or orange check at another point in the
code. For example:

int f() {

if (..)

return 0 ; // This should be the cause of the orange division by zero

return 1 ;

}

void g() {

int x = f() ;

int y = 360 / x ; // Orange check for division by zero

}

For this check, in the Check Details view, the software lists the probable
cause, intermediate events, and the orange check.

For more information, see Viewing Probable Cause Information.

81

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brzsavx-1.html#btdfkd6

R2012a

Enhanced MISRA-C Coding Rules Checker

The following improvements have been made:

• Support for the OBL (obligatory) category specified by MISRA AC AGC
Guidelines for the Application of MISRA-C:2004 in the Context of
Automatic Code Generation:

- Includes new support for rules 3.4, 12.11, 16.10, and 17.1.

- To check for compliance with the OBL category, specify option
-misra2 with the new value AC-AGC-OBL-subset. See MISRA C rules
configuration (-misra2).

- Rule 3.4 requires checking that all pragma directives are documented
within the documentation of the compiler. However, you can allow
undocumented pragma directives by specifying -misra2 with the new
option -allowed-pragmas. For example:

polyspace-c -misra2 AC-AGC-OBL-subset -allowed-pragmas pragma1,pragma2,pragma3

See MISRA C rules configuration (-misra2).

- With coding rule 16.10, the software does not indicate a violation when
the function is memcpy, memmove, memset, strcpy, strncpy, strcat, or
strncat.

• Enhanced support for rules 16.7 and 19.10:

- Rule 16.7 — The software generates a warning if a non-const pointer
parameter is passed to a call of a function that is declared with a const
pointer parameter.

- Rule 19.10 — The software does not generate a warning if a parameter is
reused as an argument of a function or function-like macro. For example,
consider a parameter x. The software does not generate a warning if x
appears as (x) or (x, or ,x) or ,x,.

• Enhanced format for XML report files (MISRA-C-report.xml,
MISRA-CPP-report.xml, and JSF-report.xml).

For more information, see MISRA C Rules Supported.

82

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/brj7vi6-36.html#brj7vi6-53
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/brj7vi6-36.html#brj7vi6-53
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/brj7vi6-36.html#brj7vi6-53
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/bso9f2j.html#brjxmed

Integrated Compilation Assistant

Integrated Compilation Assistant

The Compilation Assistant is now enabled by default. During a verification,
if the Compilation Assistant detects compilation errors, the verification
stops and the software displays errors and possible solutions on the Output
Summary tab.

To disable the Compilation Assistant, select Options > Preferences, which
opens the Polyspace Preferences dialog box. Then, on the Project and result
folder tab, clear the Compilation Assistant check box and click OK.

The Configuration pane has a new tab, Compiler Settings, which replaces
the Compilation Assistant view.

For more information, see Checking for Compilation Problems.

83

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/bspq7fu-1.html#bsxyut5-1

R2012a

Data Range Specification Enhancements

Previously, a wizard was provided for data range specification (DRS). Now,
you can specify data ranges through the Polyspace DRS configuration dialog
box, which provides toolbar buttons to:

• Generate a DRS configuration file.

• Update an existing file.

• Convert a DRS text file to an XML file.

For more information, see Specifying Data Ranges for Variables and
Functions (Contextual Verification).

84

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br1kt1e.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br1kt1e.html

Redefinition of Successful Verification

Redefinition of Successful Verification

Previously, if a Polyspace verification failed, for example, during pass1
(Software Safety Analysis level 1), the software communicated the
failure through log messages and the Project Browser. However, if you
clicked the xx_LAST_RESULTS.exe file within the Project Browser, the
software displayed any results (colored checks) that had been generated by
the verification. Now, the software deems a verification successful provided
some results have been generated.

85

R2012a

Polyspace Report Generator Enhancements

You can:

• Generate multiple reports in the Results Manager perspective. See
Generating Verification Reports.

• Customize report templates with MATLAB Report Generator software,
which allows you to filter results by:

- Justification status — Display all, justified, or unjustified checks.

- Type — Display only listed types of run-time checks.

- Function — Display only run-time checks from specified functions.
For more information, see Customizing Verification Reports.

86

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brz384r-38.html#br78ie1-1
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brz384r-38.html#bs6zafv-1

Polyspace In One Click (POC) Enhancement

Polyspace In One Click (POC) Enhancement

The POC software has been rewritten. The software that replaces the
previous Send To functionality now runs verifications without requesting
additional settings. See Using Polyspace In One Click.

Note Support for the Send To feature will be removed in a future release.

87

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brjxlhr.html

R2012a

Absolute Addresses
Compatibility Considerations: Yes

Polyspace supports a new check category, ABS_ADDR. The software
generates an orange ABS_ADDR check when an absolute address is assigned
to a pointer. The software has no information about the absolute address and
therefore cannot verify, for example, the address, availability of memory,
and initialization of memory.

After generating the orange ABS_ADDR check for the first assignment
operation, the software permits memory access to the absolute address. This
new behavior produces fewer orange checks in code that contains absolute
addresses. After the first assignment operation, IDP and NIV checks for
memory access operations are now green. Previously these checks were
orange.

A new option, -green-absolute-address-checks, is also available. If you
know that the absolute addresses in your code are valid, you can specify this
option which makes all ABS_ADDR checks green.

For more information, see Absolute Addresses: ABS_ADDR and Green
absolute address checks (-green-absolute-address-checks).

Compatibility Considerations

Because of this new check, verification results might change when compared
to previous versions of the software. The total number of checks might change
as the software now generates an ABS_ADDR check for each conversion of an
integer to a pointer.

If you previously created a comment for an orange IDP or NIV check (for
example, to explain the check), the comment continues to appear although
the check may now be green. In addition, the new ABS_ADDR check does not
have a comment. In Polyspace Metrics, information about justifications for
the previously orange IDP or NIV checks is lost.

88

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/brj0wt9.html#btcxvjn
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/brj7vi6-56.html#btcs865
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/brj7vi6-56.html#btcs865

Header Files Without Run-Time Checks and Coding Rule Violations

Header Files Without Run-Time Checks and Coding
Rule Violations

It is quite common for code to contain header files with library inline functions
that are never called. Previously, these files were listed in the Results
Explorer view, which could slow down your review of results. Now, if header
files do not contain run-time checks or coding rule violations, the software
does not list these header files in the Results Explorer view.

89

R2012a

Improved Access to Polyspace Demos

In the Polyspace verification environment, you can now open supplied Demo
projects through the Help menu.

90

Changes to Verification Results

Changes to Verification Results
Compatibility Considerations: Yes

• “NTC and NTL Checks” on page 91

• “ABS_ADDR Check” on page 91

Compatibility Considerations

Verification results might change when compared to previous versions of the
software. Some checks might change color, and the Selectivity rate of your
results might change.

NTC and NTL Checks
See “Suppression of NTC, NTL and UNR Checks Caused by Red Checks”
on page 78.

ABS_ADDR Check
See new “Absolute Addresses” on page 88.

91

R2012a

Changes to Coding Rules Checker Results
Compatibility Considerations: Yes

• “New MISRA-C Rules Supported” on page 92

• “MISRA-C: Rule Improvements” on page 92

Compatibility Considerations

Due to changes in the coding rules checker, the number of coding rule
violations might change when compared to previous versions of the software.

New MISRA-C Rules Supported
The coding rules checker now supports the following MISRA-C Rules:

• Rule 3.4

• Rule 12.11

• Rule 16.10

• Rule 17.1

See “Enhanced MISRA-C Coding Rules Checker” on page 82.

MISRA-C: Rule Improvements
Support for the following rules is enhanced:

• Rule 16.7

• Rule 19.10

See “Enhanced MISRA-C Coding Rules Checker” on page 82.

92

Changes to Analysis Options

Changes to Analysis Options

New Options
Option For more information

Allowed pragmas
(-allowed-pragmas)

“Enhanced MISRA-C Coding Rules Checker”
on page 82

Green absolute address checks
(-green-absolute-address-checks)

“Absolute Addresses” on page 88

Changes to Existing Options
No name changes to existing options.

93

R2012a

Options Removed

None

94

Polyspace® Server™ for C/C++ Product

Polyspace Server for C/C++ Product

95

R2012a

Enhanced Polyspace Metrics Project Index

The enhanced project index enables you to display projects as categories,
which is useful when you have a large number of projects to manage. Now,
you can:

• Create multiple-level project categories.

• Move projects between categories by dragging and dropping projects.

• Rename and remove categories. You can remove categories without
deleting the projects within the categories. The software moves these
projects back to the root level.

For more information, see Organizing Polyspace Metrics Projects.

96

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/bsnwcop-6.html#btc9zdi

Redefinition of Successful Verification

Redefinition of Successful Verification

Previously, if a Polyspace verification failed, for example, during pass1
(Software Safety Analysis level 1), the software communicated the
failure through log messages and the Project Browser. However, if you
clicked the xx_LAST_RESULTS.exe file within the Project Browser, the
software displayed any results (colored checks) that had been generated by
the verification. Now, the software deems a verification successful provided
some results have been generated.

97

R2011b
Version: 8.2
New Features: Yes
Bug Fixes: Yes

99

R2011b

Polyspace Client for C/C++ Product

100

STD_LIB Check

STD_LIB Check
Compatibility Considerations: Yes

Previously, if the arguments of a function that belonged to the C standard
library were not valid, the software would generate a check within the
corresponding stub in __polyspace_stdstubs.c. In addition, the check
category (visible in the procedural entities view) did not indicate a link to
the standard library.

Now, Polyspace supports a new check category STD_LIB, which allows easier
review of run-time errors arising from standard library calls. For example,
if a standard library function call does not contain valid arguments, the
software generates a red STD_LIB check at the function call in your code. The
check does not appear in __polyspace_stdstubs.c.

For more information, see Stubbing Standard Library Functions.

Compatibility Considerations

Due to the introduction of the STD_LIB check, verification results may change
when compared to previous versions of the software.

In addition, since the STD_LIB check has a different location and aggregates
information from multiple checks, you cannot import review comments on
standard library checks from previous releases.

For example, if you commented a check in the standard stubs using R2011a
results, that comment is lost when you import comments from the R2011a
results into R2011b results.

101

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br09so8-97.html#br09so8-106

R2011b

Enhanced MISRA-C Coding Rules Checker
Compatibility Considerations: Yes

The following improvements have been made:

• Compliance with MISRA-C:2004 Technical Corrigendum 1 — For rules 4.1,
5.1, 5.3, 6.1, 6.3, 7.1, 9.2, 10.5, 12.6, 13.5

• New support for rules 6.2, 14.1, and 17.2

• New option -boolean-types, which supports rules 12.6, 13.2, and 15.4

• Enhanced support for rules 1.1, 2.3, 5.2, 5.4, 5.5, 5.6, 5.7, 6.4, 8.1, 8.5, 11.1,
11.2, 11.4, 12.3, 12.4, 13.1, 13.7, 15.2, 16.8, 17.3, 17.6, 19.4, 19.15, and 20.1

For more information, see Checking Coding Rules.

Compatibility Considerations

Due to the improvements to the MISRA C coding rules checker, verification
results may change when compared to previous versions of the software.

102

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brjxmb7.html

Review Orange Checks that are Potential Run-Time Errors

Review Orange Checks that are Potential Run-Time
Errors

Previously, there were two modes in which you could review verification
results — manual and assistant. For the manual mode, you set the Assistant
slider to Off and the software displayed all orange checks (in addition to the
red and green checks) . With the assistant mode, there were three levels of
review — corresponding to settings 1, 2, and 3 of the Assistant slider. You
could specify the number of orange checks to display through the Assistant
Configuration tab in the Polyspace Preference dialog box.

Now, Polyspace allows you to review results at five different levels. You can
set the Review slider to 0, 1, 2, 3, or All:

• 0— Display red and gray checks. In addition, display orange checks that
are potential run-time errors. On the Polyspace Preference > Review
Configuration tab, you can specify the type of potential run-time errors
that you are interested in. You have the option of not displaying any orange
checks.

• 1, 2, and 3— This functionality is unchanged. Display red, gray, and green
checks. In addition, display orange checks according to values specified on
the Polyspace Preference > Review Configuration tab.

• All— Display red, gray, green, and all orange checks.

The Assistant Configuration tab is renamed the Review Configuration
tab.

For more information, see Reviewing Results Systematically and Reviewing
All Checks.

103

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brz384r-29.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brz384r-12.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brz384r-12.html

R2011b

Display Sources of Orange Checks

The software identifies, where possible, code that is the source of orange
checks and provides information about this code on the new Orange Sources
tab. You can display this tab in the Run-Time Checks perspective, and see
the following columns of information:

• Type —Type of code element that causes orange check

• Name — Name of code element

• File — Name of source file

• Line — Line number in source file

• Max Oranges — Maximum number of orange checks arising from code
element

• Suggestion — How you can resolve the orange check

For more information, see Viewing Sources of Orange Checks.

With some orange checks, through this new tab, you can add or modify
data range specifications to resolve the checks. See Refining Data Range
Specifications.

104

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br2lvf5.html#bs59h1b
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br2lvf5.html#bs5_unq
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br2lvf5.html#bs5_unq

Enhanced Automatic Orange Tester

Enhanced Automatic Orange Tester

Previously, you had to run the Automatic Orange Tester manually after the
completion of a verification. Now, when you select the Automatic Orange
Tester option

• You specify the new option -automatic-orange-tester. Polyspace still
supports the previous option -prepare-automatic-tests in R2011b.
However, -prepare-automatic-tests will be removed from a future
release.

• The softwares runs dynamic tests on the orange code automatically at
the end of the verification.

• You can specify test parameters when you configure your verification. If
you do not specify test parameters, the software uses default test parameter
values.

• If you run a server verification, the software will run the dynamic tests
on the server.

The Automatic Orange Tester now also supports the following options:

• -ignore-float-rounding

• -respect-types-in-globals

• -respect-types-in-fields

• -entry-points

For more information, see Automatically Testing Orange Code.

105

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brl686s.html

R2011b

No Gray Checks in Unreachable Code
Compatibility Considerations: Yes

The only gray checks that Polyspace generates now are UNR checks for
unreachable branches of code. In addition, Polyspace generates the UNR check
only at the highest level of a branch. You no longer see nested UNR checks ,
that is, UNR checks in sub-branches.

In addition, the software displays two new metrics for the project in the
procedural entities view:

• unp— Number of unreachable procedures (functions) as a fraction of the
total number of procedures (functions)

• cov — Percentage of elementary operations in executable procedures
(functions) covered by verification

These metrics provide:

• A measure of the code coverage achieved by the Polyspace verification.

• Indicators about the validity of your Polyspace configuration. For example,
a large unp value and a low cov value may indicate an early red check or
missing function call.

See Results Explorer Tab.

Compatibility Considerations

Due to the removal of non-UNR gray checks and nested UNR checks, verification
results may change when compared to previous versions of the software.

106

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brz384r-1.html#brz384r-11

Global Variable Range Information

Global Variable Range Information

In the Variable Access pane, Polyspace displays range information for
read and write access operations on global variables within each source file.
Previously, the displayed value was the union of all access operations on the
global variable within a file. The software did not display range information
for individual operations. Now, for global variables that are integers (signed
and unsigned) or floating point variables (float and double), Polyspace also
provides range information for the individual access operations from which
the union value is obtained.

See Variable Access Pane.

107

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brz384r-1.html#bsg3p9_

R2011b

Read and Write Access in Dead Code

If a read or write access operation on a global variable lies within dead code,
then Polyspace colors the operation gray in the Variable Access pane. When
you examine verification results, you can hide these operations by clicking the

new filter button . See Variable Access Pane.

108

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brz384r-1.html#bsg3p9_

Run All Verifications in Project

Run All Verifications in Project

You can have many verifications within a project, each verification being
associated with an active configuration. Previously, you could only run one
verification at a time from the Polyspace verification environment (PVE).

Now, if you select a project and click the button , Polyspace will
run all verifications in the project. See Running a Verification.

109

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br0l3n3-1.html

R2011b

Specifying Functions Not Called by Generated Main

You can now specify source files in your project that the main generator
will ignore. Functions defined in these source files are not called by the
automatically generated main.

Use this option for files containing function bodies, so that the verification
looks for the function body only when the function is called by a primary
source file and no body is found.

For more information, see Verifying a C Application Without a “Main” in the
.Polyspace Products for C/C++ User’s Guide.

110

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br1kxv1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html

Stubbing Specific Functions

Stubbing Specific Functions

You can now specify specific functions that you want the software to stub
using the option Functions to stub (-functions-to-stub).

For more information, see Stubbing in the .Polyspace Products for C/C++
User’s Guide.

111

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br09so8-97.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html

R2011b

Changes to Verification Results
Compatibility Considerations: Yes

• “Cross-block Critical Sections” on page 112

• “Function Pointers in extern const Structure Stubbed” on page 113

• “Pointers point to the Beginning of Allocated Objects” on page 113

Compatibility Considerations

Verification results may change when compared to previous versions of the
software. Some checks may change color, and the Selectivity rate of your
results may change.

Refer to the following sections for information on the specific changes.

Cross-block Critical Sections
In previous releases, the beginning and the end of a critical section must
be in same block.

In R2011b, every kind of cross block critical section is supported. However,
some constructs may raise a warning.

For example:

void foo(void) {
BEGIN_CS();

for (;;) {
END_CS();

}
}

Warning: Ending critical section cs in a loop in test.foo

112

Changes to Verification Results

Function Pointers in extern const Structure Stubbed
In previous releases, function pointers in extern const structures were not
always stubbed, and could result in a COR error.

For example:

typedef struct {
int a;
void (*foo)(void);
} AA;

extern const AA aaa;
extern AA aaaa;

extern const a;
const b;

void foo(void)
{
int bb;
bb = a;
bb = b;

bb = aaa.a;
aaaa.foo();
aaa.foo(); //COR Error in previous releases
}

In R2011b, every extern variable will be stubbed regardless of its qualifiers.

Pointers point to the Beginning of Allocated Objects
In previous releases, a pointer in the generated main points anywhere in the
allocated buffer, which could cause problems when using DRS.

Allocated objects now point at the beginning of the object.

113

R2011b

Changes to Coding Rules Checker Results
Compatibility Considerations: Yes

• “New MISRA-C Rules Supported” on page 114

• “MISRA-C: Rule 1.1 Messages” on page 114

• “MISRA-C: Rule 6.3 Improvements” on page 114

• “MISRA-C: Rule 17.6 Improvements” on page 115

Compatibility Considerations

Due to changes in the coding rules checker, the number of coding rule
violations may change when compared to previous versions of the software.

Refer to the following sections for information on the specific changes.

New MISRA-C Rules Supported
The coding rules checker now supports the following MISRA-C Rules:

• Rule 1.2

• Rule 3.1

• Rule 3.4

• Rule 6.2

• Rule 12.11

• Rule 14.1

• Rule 16.10

MISRA-C: Rule 1.1 Messages
Message reported for violations of MISRA-C: Rule 1.1 has been improved.

MISRA-C: Rule 6.3 Improvements
Enforcement of MISRA-C Rule 6.3 has been improved:

114

Changes to Coding Rules Checker Results

• no more violations when the plain char is used

• no more violations when basic types are used for bitfields declarations

In previous releases, the coding rules checker reported a violation on the
following code:

typedef struct TestData_tag {

unsigned int IsOK :1;
unsigned int IsCounterOK :1;
unsigned int IsNew :1;
unsigned int UnusedBytes :13;

} TestData;

void main(void) {

TestData c;

c.IsOK = 1;
}

In R2011b, this syntax is allowed.

MISRA-C: Rule 17.6 Improvements
Enforcement of MISRA-C: Rule 17.6 has been improved.

If the address of an object is assigned to another object that may persist after
the first object has ceased to exist, a runtime error may occur.

In previous releases, the coding rules checker did not detect a violation in
the following example:

extern int *vg;
void provide(short int a)
{

int v1;
v1 = a;
vg = &v1;

115

R2011b

}

116

Changes to Analysis Options

Changes to Analysis Options

New Options
Option For more information

Functions to stub
(-functions-to-stub)

“Stubbing Specific Functions” on page 111

-main-generator-files-to-ignore “Specifying Functions Not Called by Generated
Main” on page 110

Maximum test time
-dynamic-execution-test-timeout

“Enhanced Automatic Orange Tester” on page
105

Maximum loop iterations
-dynamic-execution-loop-max-iteration

“Enhanced Automatic Orange Tester” on page
105

Number of automatic tests
-dynamic-execution-tests-number

“Enhanced Automatic Orange Tester” on page
105

Changes to Existing Options
The following options have been renamed in R2011a.

New Name (R2011b) Previous Name (R2011a) Change

Stub complex functions Stub all functions GUI name only

Dialect support Keil/IAR support GUI name only

-automatic-orange-tester -prepare-automatic-test Command-line name and
enhanced functionality

117

R2011b

Deprecated Options

• Launch code verification from beginning of (-from)

Note The -from option is still accepted when launching a verification
in batch mode.

118

Polyspace® Server™ for C/C++ Product

Polyspace Server for C/C++ Product

119

R2011b

Running Multiple Verifications Simultaneously
Compatibility Considerations: Yes

If you purchase more than one license for a Polyspace server, you can now
configure the server to run multiple verifications at the same time. This can
improve the performance of server verifications.

To configure your server to run multiple verifications, open the Remote
Launcher Manager, then set the Number of Polyspace verifications that
can run simultaneously on this server to the number of licenses you
have activated for your server.

For more information, see Configuring Polyspace Server Software in the
Polyspace Installation Guide.

Compatibility Considerations

If you configure your server to run more than one verification simultaneously,
the server will not be able to run verifications using older versions of the
software.

For example, if your server has both R2011a and R2011b software installed,
you cannot run a verification using the R2011a software.

120

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brl87c1.html#brl87ch-1
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brvjckt-1.html

Polyspace® Metrics

Polyspace Metrics

Review Changes between Results of Successive Verifications
You can specify a version of a project and review only the differences between
verification results of the specified version and the previous verification. See
Review New Findings.

File Modules with Quality Levels
If you have projects with two or more file modules in the Polyspace verification
environment, by default Polyspace Metrics displays verification results using
the same module structure. However, Polyspace Metrics also allows you to
create or delete file modules. You can group files into a module and specify
a quality level for the module, which applies to all files within the module.
This feature allows you to specify different quality levels for your files in the
review of verification results. See Creating a File Module and Specifying
Quality Level.

Enhanced Graphs and Charts
Polyspace Metrics displays enhanced graphs and charts.

If you specify a range of project versions:

• On the Summary tab, Run-Time Defects are plotted as separate
categories, High, Medium, and Low.

• On the Run-Time Checks tab:

- Under Confirmed Defects, you see separate plots for the categories,
High, Medium, and Low.

- Under Run-Time Findings, you see separate plots for red checks, NTC
checks, and gray checks.

If you specify a single version of a project, Polyspace Metrics displays file
defect information, ordering the files according to the number of defects in
each file. Use the new # items field to specify the maximum number of files
for which information is displayed. See Displaying Metrics for Single Project
Version.

121

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/bsnwcop-7.html#bs6l28k
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/bsnwcop-7.html#bs6l18m
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/bsnwcop-7.html#bs6l18m
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/bsnwcop-7.html#bs6l3xs
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/bsnwcop-7.html#bs6l3xs

R2011a
Version: 8.1
New Features: Yes
Bug Fixes: Yes

123

R2011a

Polyspace Client for C/C++ Product

124

Code Metrics (New for C++)

Code Metrics (New for C++)

Code metric support, including cyclomatic number and other HIS metrics.

Polyspace verification can now generate metrics about code complexity, which
are based on the Hersteller Initiative Software (HIS) standard.

These metrics include:

• Project metrics – including number of recursions, number of include
headers, and number of files.

• File metrics – including comment density, and number of lines.

• Function metrics – including cyclomatic number, number of static paths,
number of calls, and Language scope.

When you run a verification with the -code-metrics option enabled, you can
view software quality metrics data in the Polyspace Metrics Web interface
(Code Metrics view), or by running a Software Quality Objectives report
from the Polyspace verification environment.

The software generates numeric values or pass/fail results for various metrics.

For more information, see Software Quality with Polyspace Metrics in the
Polyspace Products for C/C++ User’s Guide.

125

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/bsnwcop-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html

R2011a

Saving Polyspace Metrics Review

Previously, when you saved your project (Ctrl+S) after a review of results
from Polyspace Metrics, the software would save your comments and
justifications both locally and in the Polyspace Metrics repository.

Now, if you save your project (Ctrl+S), the software saves your review to a

local folder only. A new button is available on the Run-Time Checks
toolbar. If you click this button, the software saves your comments and
justifications to a local folder and the Polyspace Metrics repository.

This feature allows you to upload your review to the repository only when you
are satisfied that your review is, for example, correct and complete.

You can still configure your software to display the previous behavior.

For more information, see Saving Review Comments and Justifications in the
Polyspace Products for C/C++ User’s Guide.

126

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/bsnwcop-7.html#bszsc45
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html

Compilation Assistant

Compilation Assistant

New Compilation Assistant to ease project configuration (cross-compiler
settings).

The Compilation Assistant allows you to check your project for compilation
problems before launching a verification. The Compilation Assistant then:

• Automatically detects pre-processing, compilation, and dialect options
required for your code (for example, -I and -D).

• Provides suggestions to solve compilation problems.

For more information, see Checking for Compilation Problems in the
Polyspace Products for C/C++ User’s Guide.

127

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/bspq7fu-1.html#bsxyut5-1
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html

R2011a

Improved Search Function

Enhanced search functionality in the Run-Time Checks perspective allows
you to perform a search in several views at once (call hierarchy, variable
access, run-time checks and source code), and provides search results in a
single “Search” view.

For more information, see Searching Results in Results Manager Perspective
in the Polyspace Products for C/C++ User’s Guide.

128

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brz384r-1.html#bsg47w6-1
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html

Back to Source Function in Run-Time Checks Perspective

Back to Source Function in Run-Time Checks
Perspective

Improved navigation from the Run-Time Checks perspective to the source
code containing a check.

You can now right-click a check in your verification results, and open the
source file containing that check.

You can configure the software to open source files in either a text editor,
or your IDE.

For more information, see Configuring Text and XML Editors in the Polyspace
Products for C/C++ User’s Guide.

129

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br0l5ad-5.html#br2lbrc-1
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html

R2011a

Structure Fields in Data Dictionary

Distinction of variable fields in the Data Dictionary provides a more accurate
Data Dictionary.

The enhanced Data Dictionary:

• Helps locate specific field accesses.

• Provides more information on fields (number of read/write accesses, field
type).

• Provides a hierarchical view of structured variables.

For more information, see Variable Access Pane in the Polyspace Products for
C/C++ User’s Guide.

130

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brz384r-1.html#bsg3p9_
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html

Overflow Check Customization

Overflow Check Customization
Compatibility Considerations: Yes

New options allow you to customize how OVFL checks are handled during
verification. You can customize computation through overflow constructions,
control the presence of overflow checks, and the dynamic behavior in case of
a run-time error.

These options allow you to:

• Not generate OVFL checks on all computations (values are computed the
same way processors do).

• Not truncate the value after an OVFL check, and carry on with wrapped
values (OVFL check does not impact values during verification).

For more information, see Detect overflows on (-scalar-overflows-checks) and
Overflows computation mode (-scalar-overflows-behavior) in the Polyspace
Products for C/C++ Reference.

Compatibility Considerations

The option -detect-unsigned-overflows (available in previous releases) has
been renamed. To achieve the same behavior as the previous option, specify
the new option -scalar-overflows-checks signed-and-unsigned.

When using the new options, your verification results may change when
compared to previous versions of the software. Some checks may change color,
and the Selectivity rate of your results may change.

131

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/brj7vi6-56.html#brj7vi6-74
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/brj7vi6-56.html#bsx8o1k-1
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/br0l0v3-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/br0l0v3-1.html

R2011a

Main Generator Improvements
Compatibility Considerations: Yes

Enhanced main-generator to improve verification results for generated code.

The new main-generator allows you greater control over the behavior of
the generated main. New options allow you to generate a main specifically
designed for cyclic programs, to support generated code and Model-Based
Design. This improves verification results at the subsystem level.

The generated main now has the following behavior:

1 It initializes any variables identified by the option -variables
written-before-loop.

2 It calls any functions specified by the option
-functions-called-before-loop. This could be considered an
initialization function.

3 It initializes any variables identified by the option -variables
written-in-loop.

4 It calls any functions specified by the option -functions-called-in-loop.

5 It calls any functions specified by the option
-functions-called-after-loop. This could be a terminate function for
a cyclic program.

For more information, see Automatically Generating a Main in the Polyspace
Products for C/C++ User’s Guide.

Compatibility Considerations

Due to precision improvements, verification results may change when
compared to previous versions of the software. Some checks may change color,
and the Selectivity rate of your results may change.

In addition, several Analysis options have been renamed to support the new
main generator.

132

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br1kxv1.html#br1kxwn-4
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html

Main Generator Improvements

Previous Name (R2010b) New Name (R2011a)

-main-generator-writes-variables -variables-written-before-loop

-function-called-before-main -functions-called-before-loop

-main-generator-calls -functions-called-in-loop

If you have any scripts that use the old options, update them to reflect the
new names.

133

R2011a

Verification Time Limit

You can now specify a time limit for verifications using the -timeout option.
If the verification does not complete within the specified time, the verification
fails.

For more information, see Verification time limit (-timeout) in the Polyspace
Products for C/C++ Reference.

134

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/brj7vi6-56.html#bsvbht6
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/br0l0v3-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/br0l0v3-1.html

Continue Verification with Compile Errors

Continue Verification with Compile Errors

You can now specify that a verification continues even if some source files do
not compile, using the option -continue-with-compile-error.

Functions that are used but not specified are stubbed automatically.

If a source file contains global variables, you may also need to select the option
-allow-undef-variables to enable verification.

For more information, see Continue with compile error
(-continue-with-compile-error) in the Polyspace Products for C/C++
Reference.

135

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/brj7vi6-56.html#bsvbhtc
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/brj7vi6-56.html#bsvbhtc
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/br0l0v3-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/br0l0v3-1.html

R2011a

Precision Improvements
Compatibility Considerations: Yes

Improved precision on arrays and functions, resulting in less orange checks.

The precision improvements effect:

• NIV, NIVL, NIP, and IRV checks

• array cells

• boolean decision graphs

• various other constructs

Compatibility Considerations

Verification results may change when compared to previous versions of the
software. Some checks may change color, and the Selectivity rate of your
results may change.

136

Permissive Mode Set By Default

Permissive Mode Set By Default
Compatibility Considerations: Yes

Permissive verification mode is now set by default for new projects. This
reduces the number of compilation errors for verifications launched with
default settings.

The following options are now set by default:

• -discard-asm

• -allow-non-in-bitfields

• -permissive-link

• -allow-undef-variables

• -allow-unnamed-fields

• -allow-negative-operand-in-shift

• -allow-language-extensions

If you want to use stricter compilation settings, you can select them in the
project configuration.

Compatibility Considerations

When using the default options, your results may change when compared to
previous versions of the software. Some checks may change color, and the
Selectivity rate of your results may change.

137

R2011a

Default Project Location

On Windows systems, the default project location has changed.

The default project location is now in My Documents. Previously, the default
location was defined in the user profile.

138

Variable Range Inconsistency between Variable Access Pane and Tooltips

Variable Range Inconsistency between Variable
Access Pane and Tooltips

The range given for a variable in the Variable Access Pane (Variables View)
can differ from the range given by tooltips on the reads of a variable in the
Source code view. The range provided by the tooltip will be wider than the
range given in the Variables View.

This difference is due to imprecision in the tooltip. Use the variable range
that the Variables view provides.

For example:

• Variables View states that variable X is in range [0..4000]

• Tooltip on a read of X states that the range is [0,7000].

In this case, you should accept [0..4000] as the range. The tooltip range is
caused by imprecision that may be fixed in future releases.

139

R2011a

Visual Studio Integration

New Visual Studio import tool allows you to automatically extract some
Polyspace settings from a Visual Studio project file.

This tool can help you:

• Locate source files, include folders and preprocessing directives

• Set some Polyspace Visual Studio specific options

For more information, see Importing Visual Studio Project Information into
Polyspace Project in the PolySpace® Products for C++ User’s Guide.

140

Product Name Change in Files and Folders

Product Name Change in Files and Folders
Compatibility Considerations: Yes

The Polyspace product name has changed from “PolySpace” to “Polyspace”
in R2011a. This change impacts the name of all files and folders created
by the software.

For example:

• PolySpace-Doc folder has changed to Polyspace-Doc

• PolySpace_xxxx.log file has changed to Polyspace_xxxx.log

Compatibility Considerations

If you have existing folders that use the previous product name (for example,
PolySpace/PolySpace_Common) the R2011a installation will continue to use
these existing folders. However, any files or folders created during or after
installation will use the new name.

If you have any shortcuts or scripts that are case-sensitive, you should update
them to use the right name.

141

R2011a

Visual Studio Support

Added support for Microsoft® Visual Studio 2010.

For more information, see the Polyspace Installation Guide.

142

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brvjckt-1.html

Eclipse IDE Support

Eclipse IDE Support

Added support for Version 3.6 of the Eclipse IDE.

For more information, see the Polyspace Installation Guide.

143

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brvjckt-1.html

R2011a

License Manager Support

The License Manager for Polyspace products has been upgraded to FlexNet®

11.9.

You may need to upgrade your FlexNet server and daemon.

For more information, see Polyspace License Installation in the Polyspace
Installation Guide.

144

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/br2e2qj.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brvjckt-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brvjckt-1.html

Changes to Verification Results

Changes to Verification Results
Compatibility Considerations: Yes

• “Certain COR Checks Changing to OVFL” on page 145

• “COR Checks on Function Pointer” on page 146

• “NIV Check on Local Volatile Variables” on page 146

• “OVFL Checks on Assignment” on page 147

• “Precision Improvements for NIV Checks” on page 147

• “Precision Improvements on Arrays and Functions” on page 147

• “Compilation Errors for Classes without Constructors” on page 147

Compatibility Considerations

Verification results may change when compared to previous versions of the
software. Some checks may change color, and the Selectivity rate of your
results may change.

Refer to the following sections for information on the specific changes.

Certain COR Checks Changing to OVFL
In previous releases, certain types of overflow errors were reported as COR
checks instead of OVFL checks. For example:

typedef long int32;
extern int32 random(void);

int32 func(int32 a, int32 b)
{
int32 res = 0;
if (random()) {
res = a/b; // COR changing to OVFL in R2011a
}
return res;
}

145

R2011a

These checks are now reported as OVFL, which will impact check statistics
when compared to previous releases.

COR Checks on Function Pointer
In previous releases, verification reported a COR check on function pointer
when the parameter type of function pointer is void*. For example:

typedef void (*func)(void*);

void foo(int *p) { *p=1; }

void bar(void)
{
int a;
func A = foo;
A(&a);
}

In R2011a, verification considers that type void * is compatible with all
other pointer types.

This may result in changes to the color of COR checks. The Call graph may
also been impacted. It can also have an impact on performance and precision
(more calls considered).

NIV Check on Local Volatile Variables
The behavior of NIV checks for local volatile variables has changed.

In previous releases, the NIV for a local volatile variable was always orange.
In R2011a, verification allows local volatile variables to behave just like other
variables – if they are initialized in the code, the NIV is green.

Polyspace verification considers that the hardware can bring a value (so NIV
cannot be red) but will not de-initialize. Therefore, if the variable is initialized
by the code, it is green.

146

Changes to Verification Results

OVFL Checks on Assignment
By default, verification no longer reports OVFL checks on assignment, for
example:

uc = ~uc;

The total number of checks in your results may change when compared to
previous releases.

If you want the verification to report these types of checks, you can use the
option -detect-overflows-on-operator-not to retain the previous behavior.

Precision Improvements for NIV Checks
Improved precision on NIV, NIVL, NIP, and IRV checks.

Precision Improvements on Arrays and Functions
Improved precision on arrays and functions.

Compilation Errors for Classes without Constructors
In previous releases, a compilation error occurs when you use the options
-unit-by-unit or -class-analyzer all on source code containing classes
with no user defined or compiler generated constructor.

In R2011a, this behavior changes as follows:

• No compilation error occurs.

• When using the options -unit-by-unit or -class-analyzer all, if a
class has no constructor, all of its members are randomly initialized to
the full range.

• When using the option -class-analyzer custom-class-list, if a class
among the custom-class-list has no constructor, the verification does not
initialize the class members in order to highlight NIV/NIP on accessing
the class members (which means that this class instance cannot be
constructed).

• A warning is displayed in the log file.

147

R2011a

Changes to Coding Rules Checker Results
Compatibility Considerations: Yes

• “MISRA C Rule 12.1 – Parentheses for Operand of Unary Operator.” on
page 148

• “Single Rule Violation Reported Multiple Times” on page 148

Compatibility Considerations

Due to changes in the coding rules checker, the number of coding rule
violations may change when compared to previous versions of the software.

Refer to the following sections for information on the specific changes.

MISRA C Rule 12.1 – Parentheses for Operand of Unary
Operator.
In previous releases, the coding rules checker could incorrectly report a
violation of MIRSA C Rule 12.1 for the operand of a unary operator. For
example:

Y1 = (U1 * U2) -0.366; // Passes 12.1
Y2 = (-1 * (0.366)) + (U1 * U2); // Fails 12.1
Y3 = -0.366 + (U1 * U2); // Fails 12.1
4 = 0.366 + (U1 * U2); // Passes 12.1

The MISRA rule states that parentheses are not required for the operand
of a unary operator.

The number of violations of Rule 12.1 may decrease when compared to
previous releases.

Single Rule Violation Reported Multiple Times
In previous releases, Polyspace Metrics could report more than one violation
of a single coding rule in the same location. This occurred when the message
of a rule violation was modified, and the same results were uploaded to the
Metrics database multiple times.

148

Changes to Coding Rules Checker Results

In R2011a, messages for rule violations that have the same ID and the same
location are merged into a single message of only one rule violation

Therefore, the total number of rule violations may be lower in R2011a than
in previous releases.

149

R2011a

Changes to Analysis Options

New Options
Option For more information

Variables written in loop
(-variables-written-in-loop)

“Main Generator Improvements” on
page 132

Functions called after loop
(-functions-called-after-loop)

“Main Generator Improvements” on
page 132

Overflow computation mode
(-scalar overflows-behavior)

“Overflow Check Customization” on
page 131

Continue with compile error
(-continue-with-compile-error)

“Continue Verification with Compile
Errors” on page 135

Verification time limit
(-timeout)

“Verification Time Limit” on page
134

Changes to Existing Options
The following options have been renamed in R2011a.

New Name (R2011a) Previous Name (R2010b) Change

Target operating system Operating system target
for PolySpace stubs

GUI name only

Ignore assembly code Discard Assembly code GUI name only

Allow non int types for
bitfields

Allow non-ANSI/ISO C-90
types of bitfields

GUI name only

Allow undefined global
variables

Continue even with
undefined global variables

GUI name only

Ignore overflowing
computations on constants

Permits overflowing
computations on constants

GUI name only

Allow anonymous
unions/structure fields

Allow un-named
Unions/Structures

GUI name only

Allow negative operand for
left shifts

Do not check the sign of
operand in left shifts

GUI name only

150

Changes to Analysis Options

New Name (R2011a) Previous Name (R2010b) Change

Ignore missing header files No error on missing header
file

GUI name only

Variables written before
loop

(-variables-written-
before-loop)

Write accesses to global
variables

(-main-generator-
writes-variables)

GUI and command-line name

See “Main Generator
Improvements” on page
132

Functions called before
loop

(-functions-called-
before-loop)

First functions to call

(-function-called-
before-main)

GUI and command-line name

See “Main Generator
Improvements” on page
132

Functions called in loop

(-functions-called-in-loop)

Function calls

(-main-generator-calls)

GUI and command-line name

See “Main Generator
Improvements” on page
132

Detect overflows on

(-scalar-overflows-checks)

Detect overflows on
unsigned integers

(-detect-unsigned-
overflows)

Functionality change

GUI and command line name

See “Overflow Check
Customization” on page
131

In addition, the default settings for some Permissive options have changed.

Deprecated Options
None.

151

R2011a

Polyspace Server for C/C++ Product

152

Code Metrics (New for C++)

Code Metrics (New for C++)

Code metric support, including cyclomatic number and other HIS metrics.

Polyspace verification can now generate metrics about code complexity, which
are based on the Hersteller Initiative Software (HIS) standard.

These metrics include:

• Project metrics – including number of recursions, number of include
headers, and number of files.

• File metrics – including comment density, and number of lines.

• Function metrics – including cyclomatic number, number of static paths,
number of calls, and Language scope.

When you run a verification with the -code-metrics option enabled, you can
view software quality metrics data in the Polyspace Metrics Web interface
(Code Metrics view), or by running a Software Quality Objectives report
from the Polyspace verification environment.

The software generates numeric values or pass/fail results for various metrics.

For more information, see Software Quality with Polyspace Metrics in the
PolySpace Products for C++ User’s Guide.

153

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/bsnwcop-1.html

R2011a

Saving Polyspace Metrics Review

Previously, when you saved your project (Ctrl+S) after a review of results
from Polyspace Metrics, the software would save your comments and
justifications both locally and in the Polyspace Metrics repository.

Now, if you save your project (Ctrl+S), the software saves your review to a

local folder only. A new button is available on the Run-Time Checks
toolbar. If you click this button, the software saves your comments and
justifications to a local folder and the Polyspace Metrics repository.

This feature allows you to upload your review to the repository only when you
are satisfied that your review is, for example, correct and complete.

You can still configure your software to display the previous behavior.

For more information, see Saving Review Comments and Justifications in the
Polyspace Products for C/C++ User’s Guide.

154

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/bsnwcop-7.html#bszsc45
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html

Automatic Comment Import for Server Verifications

Automatic Comment Import for Server Verifications

When you download results from the Polyspace server, the software now
automatically imports any comments from results in the destination folder
into the downloaded results (except for verifications using the option
-add-to-results-repository).

As a result of this change, you can now download intermediate results for a
verification running on the Polyspace server, and add or edit comments on
those results. When you later download the final results, your comments
are preserved.

You can also download and comment on a single unit of a unit-by-unit
verification, even if other units are still pending in the server queue. When
you download the final results (which overwrites the earlier results), your
comments are preserved.

155

R2011a

License Manager Support

The License Manager for Polyspace products has been upgraded to FlexNet
11.9.

You may need to upgrade your FlexNet server and daemon.

For more information, see Polyspace License Installation in the Polyspace
Installation Guide.

156

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/br2e2qj.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brvjckt-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brvjckt-1.html

R2010b
Version: 8.0
New Features: Yes
Bug Fixes: Yes

157

R2010b

Polyspace Client for C/C++ Product

158

Polyspace® Graphical User Interface

Polyspace Graphical User Interface

Redesigned Polyspace graphical user interface replaces the Launcher
and Viewer modules with a single, unified interface called the Polyspace
verification environment (PVE).

You use the Polyspace verification environment to create Polyspace projects,
launch verifications, and review verification results. The new interface also
enables you to provide comments in the source code or in the results.

The Polyspace verification environment consists of three perspectives:

• “Project Manager Perspective” on page 160

• “Coding Rules Perspective” on page 161

• “Run-Time Checks Perspective” on page 162

159

R2010b

Project Manager Perspective
The Project Manager perspective allows you to create projects, set verification
parameters, and launch verifications.

��������	��
�����
����������
�

�	������������������

������������������

�	�����

�
�������	�����

For information on using the Project Manager perspective,
see Setting Up a Verification Project in the <trademark
class="registered">PolySpace</trademark> Products for C User’s
Guide or Polyspace Products for C++ User’s Guide.

160

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brimow9-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html

Polyspace® Graphical User Interface

Coding Rules Perspective
The Coding Rules perspective allows you to review results from the Polyspace
coding rules checker, to check compliance with established coding standards.

For information on using the Coding Rules perspective, see Checking Coding
Rules in the Polyspace Products for C/C++ User’s Guide or Checking Coding
Rules in the Polyspace Products for C++ User’s Guide.

161

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brjxmb7.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brjxmb7.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/bru7_x0-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/bru7_x0-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html

R2010b

Run-Time Checks Perspective
The Run-Time Checks perspective allows you to review verification results,
comment individual checks, and track review progress.

���������
�����������������
���

������
����

�
��
����
����

�
��
���
������

���� �!�
����"�

For information on using the Run-Time Checks perspective, see Reviewing
Verification Results in the Polyspace Products for C/C++ User’s Guide or
Polyspace Products for C++ User’s Guide.

162

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brj0wna.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brj0wna.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html

Permissiveness on File and Folder Names

Permissiveness on File and Folder Names

Polyspace software now allows space characters in the names of Projects,
source files, and folders, as well as in option arguments.

In addition, multiple source files with the same name are now allowed.

Note Non-ASCII characters in file names are not supported.

163

R2010b

MISRA C++ Coding Rules Support

Enhanced MISRA C++ checker supports all statically enforceable MISRA-C++
coding rules.

Polyspace software can now check all possible C++ programming rules defined
by the MISRA C++ coding standard. The Polyspace MISRA C++ checker
provides messages when MISRA C++ rules are not respected. Most messages
are reported during the compile phase of a verification.

Note The Polyspace MISRA C++ checker is based on MISRA C++:2008 –
“Guidelines for the use of the C++ language in critical systems." For more
information on these coding standards, see http://www.misra-cpp.com.

For more information, see Checking Coding Rules, in the Polyspace Products
for C++ User’s Guide.

164

http://www.misra-cpp.com/
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/bru7_x0-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html

Coding Rules Checker Enhancements

Coding Rules Checker Enhancements

The coding rules checker for MISRA C, MISRA C++, and JSF C++ coding
standards has been enhanced as follows:

• You can now set all supported coding rules to any state: Error, Warning,
or Off.

• The Files and Folders to ignore (-includes-to-ignore) option now
supports the keyword “all,” allowing you to exclude all included files from
coding rules checking.

• The new Coding Rules perspective allows you to review and categorize
coding rule violations, and provide comments in the results to justify
violations.

• The MISRA C checker now allows you to automatically select two
recommended subsets of coding rules (SQO-subset1, and SQO-subset2), in
addition to creating a custom subset.

For more information, see Checking Coding Rules in the Polyspace Products
for C/C++ User’s Guide or Checking Coding Rules, in the Polyspace Products
for C++ User’s Guide.

165

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brjxmb7.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/bru7_x0-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html

R2010b

Code Metrics (for C)

Code metric support, including cyclomatic number and other HIS metrics.

Polyspace verification can now generate metrics about code complexity, which
are based on the Hersteller Initiative Software (HIS) standard.

These metrics include:

• Project metrics – including number of recursions, number of include
headers, and number of files.

• File metrics – including comment density, and number of lines.

• Function metrics – including cyclomatic number, number of static paths,
number of calls, and Language scope.

When you run a verification with the -calculate-code-metrics option
enabled, you can view software quality metrics data in the Polyspace Metrics
Web interface (Code Metrics view), or by running a Software Quality
Objectives report from the Polyspace verification environment.

The software generates numeric values or pass/fail results for various metrics.

For more information, see Software Quality with Polyspace Metricsin the
Polyspace Products for C/C++ User’s Guide or Polyspace Products for C++
User’s Guide.

166

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/bsnwcop-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html

Filtering Orange Checks Caused by Input Data (New for C++)

Filtering Orange Checks Caused by Input Data (New
for C++)

Polyspace verification now identifies orange checks caused by input data for
C++ code, in addition to C code. The software provides additional information
on these orange checks, and allows you to hide them in the Run-Time Checks
perspective.

Note Although this type of orange check could reveal a bug, they usually do
not.

Verification can identify orange checks caused by:

• Stubs

• Main-generator calls

• Volatile variables

• Extern variables

• Absolute address

When the software identifies this type of orange check, the Run-Time Checks
perspective provides information on its cause.

167

R2010b

The Polyspace code verification log file also lists possible sources of
imprecision for orange checks.

In addition, you can now hide these types of orange checks in the Run-Time
Checks perspective. When using Expert mode, click the Color filter icon,
then clear the Orange checks possibly impacted by inputs option.

The software hides orange checks impacted by inputs.

For more information, see Working with Orange Checks Caused by Input
Data in the Polyspace Products for C++ User’s Guide.

168

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br2lvf5.html#bsg66w2-1
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br2lvf5.html#bsg66w2-1
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html

New Options to Classify Run-Time Checks and Coding Rules Violations

New Options to Classify Run-Time Checks and
Coding Rules Violations
Compatibility Considerations: Yes

When reviewing results in the Run-Time Checks perspective or the Coding
Rules perspective, the software now provides additional options for classifying
checks

After you review the check, you can specify the following:

• Classification – Select an option to describe the seriousness of the issue.

• Status – Select an option to describe how you intend to address the issue.

• Justified – Select the check box to indicate that you have justified this
check or rule violation.

• Comment – Enter additional information about the check

The software provides predefined values for Classification and Status. You
can also define your own statuses.

In addition to reviewing checks through the user interface, you can place
comments in your code that highlight and categorize checks identified in
previous verifications. The software displays the information that you provide
within your code comments, and marks the checks as Justified.

For more information, see Reviewing and Commenting Checks in the
Polyspace Products for C/C++ User’s Guide or Polyspace Products for C++
User’s Guide.

169

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/bsg3ns_.html#brz384r-18
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html

R2010b

Compatibility Considerations

The syntax for code comments has changed to reflect the new options for
categorizing checks.

The syntax for run-time checks is now:

/* polyspace<RTE:RTE1 : [Classification] : [Status] > [Comment] */

The syntax for coding-rule violations is now:

/* polyspace<JSF:Rule1 : [Classification] : [Status] > [Comment] */

If you placed comments in your code using the previous syntax, the comments
will still appear in your results, but the text may be displayed in different
columns.

For more information on code comments, including full syntax, see
Highlighting Known Coding Rule Violations and Run-Time Errors in the
Polyspace Products for C/C++ User’s Guide or Polyspace Products for C++
User’s Guide.

170

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/bsfjw9c.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html

Japanese and Korean Text in Comments

Japanese and Korean Text in Comments

Japanese and Korean characters are now supported for comments in results
review.

For more information, see Reviewing Checks Progressivelyin the Polyspace
Products for C/C++ User’s Guide or Polyspace Products for C++ User’s Guide.

171

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brz384r-29.html#brz384r-34
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html

R2010b

Pointer Information in the Run-Time Checks
Perspective

Enhanced ToolTip messages on pointers to improve understanding of
problems with the pointer.

For example, messages on offset in the allocated buffer now indicate if the
pointer is inside its bounds, in addition to giving raw numbers.

For more information, see Using Pointer Information in Results Manager
Perspective in the Polyspace Products for C/C++ User’s Guide or Polyspace
Products for C++ User’s Guide.

172

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brzsavx-1.html#bsgt_ij
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brzsavx-1.html#bsgt_ij
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html

Main Generation in C++

Main Generation in C++
Compatibility Considerations: Yes

Enhanced main generation options in C++ allow you to use both main
generator and class analyzer modes at the same time (the options
-class-analyzer and -main-generator-calls can be used simultaneously).

In addition, the options Select methods called by the generated main
(-class-analyzer-calls), and Function calls (-main-generator-calls)
are enhanced to provide more flexibility in configuring what functions are
called. by the generated main.

The default behavior of the main generator is now as follows:

• If you set the Class name (-class-analyzer) option to all or custom, and
set -class-analyzer-calls, then the option -main-generator-calls is
automatically set to unused, unless you explicitly set another value for
-main-generator-calls.

• Setting the Function calls (-main-generator-calls) option to unused,
all, or custom automatically sets -class-analyzer to none, unless you
explicitly set the -class-analyzer option.

For more information, see Generate a main (-main-generator)in the Polyspace
Products for C++ Reference.

Compatibility Considerations

If you use scripts that specify a value for the option -class-analyzer-calls,
you may need to update your scripts to reflect the new option arguments.
The new syntax is:

-class-analyzer-calls [all | unused | inherited_all |
inherited_unused | custom]

Where:

• all corresponds to the previous argument "default."

• inherited_unused corresponds to previous argument "inherited."

173

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ref/brlg8wg-57.html#bspgxwo-1
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ref/br2nhqn-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ref/br2nhqn-1.html

R2010b

• inherited_all means every inherited methods will be called by the
generated main.

174

Multiple Functions Called Before Main

Multiple Functions Called Before Main

The option First functions to call (-function-called before main) now
accepts a list of multiple functions, instead of just a single function.

For more information, seeFunctions called after loop
(-function-called-after-loop) in the Polyspace Products for C/C++ Reference
or Generate a main (-main-generator)in the Polyspace Products for C++
Reference.

175

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/brj7vi6-56.html#brj7vi6-62
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/brj7vi6-56.html#brj7vi6-62
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/br0l0v3-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ref/brlg8wg-57.html#bspgxwo-1
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ref/br2nhqn-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ref/br2nhqn-1.html

R2010b

Support for C99 Extensions (C)

Partial support of C99 extensions.

A new option, -allow-language-extensions, enables verification to accept a
subset of common C language constructs and extended keywords, as defined
by the C99 standard or supported by many compilers.

When you select this option, the following constructs are supported:

• Designated initializers (labeling initialized elements)

• Compound literals (structs or arrays as values)

• Boolean type (_Bool)

• Statement expressions (statements and declarations inside expressions)

• typeof constructs

• Case ranges

• Empty structures

• Cast to union

• Local labels (__label__)

• Hexadecimal floating-point constants

• Extended keywords, operators, and identifiers (_Pragma, __func__,
__const__, __asm__)

In addition, when you use this option, the software ignores the following
extended keywords:

• near

• far

• restrict

• _attribute_(X)

• rom

176

Support for C99 Extensions (C)

For more information, see Allow language extensions
(-allow-language-extensions)in the Polyspace Products for C/C++
Reference.

177

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/brj7vi6-36.html#bspsv9w-1
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/brj7vi6-36.html#bspsv9w-1
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/br0l0v3-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/br0l0v3-1.html

R2010b

New Target Processor Support (C)

Added support for 64-bit target.

The Target processor type (-target) option now supports the target x86_64,
allowing the verification to emulate 64–bit processors.

For more information, see Predefined Target Processor Specifications in the
Polyspace Products for C/C++ User’s Guide or Polyspace Products for C++
User’s Guide.

178

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br1ktk9-33.html#br1ktk_-36
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html

Default Target Processor

Default Target Processor
Compatibility Considerations: Yes

The default setting of the Target processor type (-target-processor) option
has changed from SPARC to i386.

Compatibility Considerations

If you launch verifications without specifying a value for this option, the
default value has changed. Therefore, your verification results may change
when compared to previous versions of the software. Some checks may change
color, and the Selectivity rate of your results may change.

179

R2010b

Default Operating System Target
Compatibility Considerations: Yes

The default setting of the Operating system target for Polyspace stubs
(-OS-target) option has changed from Solaris to Linux.

Compatibility Considerations

If you launch verifications without specifying a value for this option, the
default value has changed. Therefore, your verification results may change
when compared to previous versions of the software. Some checks may change
color, and the Selectivity rate of your results may change.

180

Include Folders Added to Verification by Default

Include Folders Added to Verification by Default
Compatibility Considerations: Yes

Polyspace software now automatically adds the following standard include
folders after any includes you specify:

• PolySpace_Install/Verifier/include/include-gnu

• PolySpace_Install/Verifier/include/include-gnu/next

The path to these folders will be printed in the log file at the beginning of
the compilation.

Compatibility Considerations

The total number of checks in your verification may change when compared to
previous releases, if you did not previously include these folders.

181

R2010b

Operating System Support

Added support for the Windows® 7 operating system.

Solaris™ operating system is no longer supported for new installations.

For more information, see the Polyspace Installation Guide.

182

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brvjckt-1.html

Changes to Verification Results

Changes to Verification Results
Compatibility Considerations: Yes

• “New NIP Check on Pointer to Member Function” on page 183

• “Generated Main Calls in the Main Loop and init Function” on page 184

• “INF Checks Replaced by Value on Range (C++)” on page 185

• “Value on Range (VOR) Values in pass0 Results” on page 186

• “Changes in Behavior of Inline and Sensitivity Context Options” on page
186

• “Permissiveness on Delete of Pointer to Incomplete Class” on page 186

Compatibility Considerations

Verification results may change when compared to previous versions of the
software. Some checks may change color, and the Selectivity rate of your
results may change.

Refer to the following sections for information on the specific changes.

New NIP Check on Pointer to Member Function
New NIP check introduced on variables corresponding to a pointer to member
function when verifying the pointer.

Previously, pointers to member functions were translated into a structure
composed of 4 fields. In this release, these 4 fields are checked and the
information is merged into a NIP.

For example (in R2010a and earlier):

struct A {
virtual void f() { } ;
void g() {} ;

};

int main()
{

183

R2010b

A a ;
void (A::*pmf)() ;
volatile int alea ;

if (alea)
assert(pmf != 0) ; // RED NIV located on '(' => expected a NIP

if (alea)
(a.*pmf)(); // no red, only grey

if (alea)
pmf = &A::f ;

else
pmf = &A::g ;

assert(pmf != 0) ; // spurious info on '(', green NIV instead of NIP

(a.*pmf)(); //

}

In R2010b, some NIV checks may change to NIP checks (on pointer to member
function) The Selectivity rate of your results may change when compared
to previous versions of the software.

Generated Main Calls in the Main Loop and init Function
The call of a function given to the option -function-called-before-main is
now removed from the main-generator loop.

In previous releases, when an "init" function was called before the main loop,
it was also called in the main loop. For example:

void main(void)
{

/* ** *
* Initialization of global variables with random *
* ** */

184

Changes to Verification Results

/* ******************************* *
* Call of initialization function *
* ******************************* */
{

/* call it */
init();

}
while (PST_TRUE())
{

/* ***************** *
* Call of functions *
* ***************** */
if (PST_TRUE())
{

/* call it */
init();

}
if (PST_TRUE())
{

/* call it */
foo();

}
}

}

This init function is now removed from the main-generator loop.

The Selectivity rate of your results may change when compared to previous
versions of the software.

INF Checks Replaced by Value on Range (C++)
When transforming C checks into C++ checks, the software changes INF
checks into a new value on range category (VOBJ) and displays them like
other value on range (VOR) information in the Run-Time Checks perspective.

185

R2010b

The number of checks in your results may decrease when compared to
previous releases.

Value on Range (VOR) Values in pass0 Results
Verification results now give value on range values (intervals) computed
during pass0.

In previous releases, value on range values in pass0 could only be constants
or the type full-range.

When reviewing pass0 results, value on range tooltips will now contain more
information than in previous releases.

Changes in Behavior of Inline and Sensitivity Context Options
Verification now displays a warning of you specify a nonexistent function
as an argument of the options Inline (-inline) or Sensitivity context
(-context-sensitivity). The option is ignored, and verification continues.

In previous releases, specifying a nonexistent function caused the verification
to stop.

Permissiveness on Delete of Pointer to Incomplete Class
Polyspace verification now gives a warning when it detects a delete on a
pointer with incomplete class, unless you set the Dialect (-dialect) option
to iso. If you specify the iso dialect, the verification will raise a compilation
error.

In previous releases, a delete on a pointer with incomplete class implied a
crash, and produced an error. For example:

#include <memory>

typedef class BaseClass;
typedef class Container
{
private:

std::auto_ptr<BaseClass> data;

186

Changes to Verification Results

public:
Container(std::auto_ptr<BaseClass> p) : data(p) {};

};

In R2010b, this code will be accepted with a warning, except in iso mode,
where it will raise a compilation error.

187

R2010b

Changes to Coding Rules Checker Results
Compatibility Considerations: Yes

• “MISRA and JSF Violations No Longer Reported on Internal Include
Folders” on page 188

• “MISRA-C++ Rule 2-10-2 Violations on Type Hidden by Using Directive”
on page 189

• “MISRA-C++ Rules 2-10-4 and 2-10-6 Violations on Templates” on page 190

• “MISRA-C++ Rule 3-1-1 Duplicate Violations” on page 190

• “MISRA-C++ Rule 3-4-1 Violations on Local Variables” on page 190

• “MISRA-C++ Rule 7-4-3 Violations on Assembly Language” on page 191

• “MISRA-C++ Rule 12-1-1, 12-1-2, and 12-8-2 Violations” on page 191

• “JSF Rule AV-136 Violations on Local Variables” on page 193

Compatibility Considerations

Due to changes in the coding rules checker, the number of coding rule
violations may change when compared to previous versions of the software.

Refer to the following sections for information on the specific changes.

MISRA and JSF Violations No Longer Reported on Internal
Include Folders
The coding rules checker now ignores the Include folders provided with the
product (include-gnu/ and include-linux/).

No violations are reported for identifiers appearing in hidden files, even if
these files are hidden in a hard-coded way.

The total number of violations reported by the coding rules checker may
decrease when compared to previous releases, since any violations within the
include files are no longer reported.

188

Changes to Coding Rules Checker Results

MISRA-C++ Rule 2-10-2 Violations on Type Hidden by Using
Directive
The MISRA-C++ checker is more precise on violations of rule 2-10-2,
“Identifiers declared in an inner scope shall not hide an identifier declared in
an outer scope,” when the type is hidden by a using directive on the same type.

For example:

#include "misra.h"

namespace ns1 {
class A // No Violation since the type A is declared only here.
{

A & operator= (A const & rhs);
public:

A ();
virtual void bar() = 0;

};

}
using ns1::A;
namespace ns2 {

class D : public A
{
public:

virtual void foo() = 0;
D () : A()
{
}

};
}

In previous releases, the MISRA-C++ checker incorrectly reported a violation
on the type A.

You may see fewer violations of rule 2-10-2 in MISRA C++ reports, when
compared with previous releases.

189

R2010b

MISRA-C++ Rules 2-10-4 and 2-10-6 Violations on Templates
The coding rules checker no longer reports violations of MISRA-C++ Rules
2-10-4 “A class, union or enum name (including qualification, if any) shall be a
unique identifier,” and 2-10-6 “If an identifier refers to a type, it shall not also
refer to an object or a function in the same scope” when the template class
is present in the code. A violation is reported only for explicit specialization
(which has its own declaration).

You may see fewer violations of rules of 2-10-4 and 2-10-6 in MISRA C++
reports, when compared with previous releases.

MISRA-C++ Rule 3-1-1 Duplicate Violations
The coding rules checker no longer reports duplicate violations of MISRA-C++
Rule 3-1-1 ”It shall be possible to include any header file in multiple
translation units without violating the One Definition Rule.”

In previous releases, the coding rules checker sometimes incorrectly reported
this violation multiple times on the same function.

You may see fewer violations of rule 3-1-1 in MISRA C++ reports, when
compared with previous releases.

MISRA-C++ Rule 3-4-1 Violations on Local Variables
The MISRA-C++ coding rules checker is more precise on violations of Rule
3-4-1, “An identifier declared to be an object or type shall be defined in a
block that minimizes its visibility.”

For example, the coding rules checker no longer reports violations of rule
3-4-1 for the following code:

volatile int32_t rd;
if (rd != 0) {

int32_t i;
{

int32_t j;
{

goto L1;
}

190

Changes to Coding Rules Checker Results

rd = j;
}
rd = i;

}

In previous releases, the coding rules checker incorrectly reported a violation
of rule 3-4-1 for the variable rd.

You may see fewer violations of rule 3-4-1 in MISRA C++ reports.

MISRA-C++ Rule 7-4-3 Violations on Assembly Language
The MISRA-C++ checker no longer reports errors for rule 7-4-3, “Assembly
language shall be encapsulated and isolated,” for certain compliant
constructions. For example:

void Delay_a (void)
{

asm ("NOP"); // Compliant
}

In previous releases, the MISRA-C++ checker incorrectly reported a violation
of rule 7-4-3 for this code.

You may see fewer violations of rule 7-4-3 in MISRA C++ reports.

MISRA-C++ Rule 12-1-1, 12-1-2, and 12-8-2 Violations
The MISRA-C++ checker is more precise on violations of rule 12-1-1, “An
object’s dynamic type shall not be used from the body of its constructor or
destructor,” rule 12-1-2 “All constructors of a class should explicitly call a
constructor for all of its immediate base classes and all virtual base classes,”
and rule 12-8-2 “The copy assignment operator shall be declared protected or
private in an abstract class.”

Violations of rule 12-1-1 are now reported on destructors. For example:

class C2
{
public:

~C2 ()

191

R2010b

{
typeid (C2); // New 12-1-1 violation reported here
C2::foo ();
foo ();
dynamic_cast< C2* > (this);

}
virtual void foo ();
C2 ()
{

typeid (C2); // 12-1-1 violation reported
C2::foo ();
foo ();
dynamic_cast< C2* > (this);

}
};

In addition, violations of these rules are now reported in the following cases:

• On typeid on any class with virtual function in itself or in one of its base.

• On typeid on pointer this or conversion of pointer this.

• On dynamic_cast on pointer this or conversion of pointer this.

For example, in the following code violations are now reported on typeid if
the type is struct:

struct S2
{

~S2 ()
{

typeid (S2); // New violation reported here
S2::foo ();
foo ();
dynamic_cast< S2* > (this);

}
virtual void foo ();
S2 ()
{

typeid (S2); // New violation reported here
S2::foo ();

192

Changes to Coding Rules Checker Results

foo ();
dynamic_cast< S2* > (this);

}
};

In previous releases, the MISRA-C++ checker did not report these violations.

You may see additional violations of rule 12-1-1, 12-1-2, and 12-8-2 in MISRA
C++ reports, when compared with previous releases.

JSF Rule AV-136 Violations on Local Variables
The JSF C++ coding rules checker is more precise on violations of Rule 136,
“Declarations should be at the smallest feasible scope.”

For example, the coding rules checker no longer reports violations of rule 136
for the following code:

volatile int32_t rd;
if (rd != 0) {

int32_t i;
{

int32_t j;
{

goto L1;
}
rd = j;

}
rd = i;

}

In previous releases, the coding rules checker incorrectly reported a violation
of rule 136 for the variable rd.

You may see fewer violations of rule 136 in JSF C++ reports.

193

R2010b

Polyspace Server for C/C++ Product

194

Polyspace® Metrics Web Interface

Polyspace Metrics Web Interface

A web-based tool for software development managers, quality assurance
engineers, and software developers, which allows you to do the following
in software projects:

• Evaluate software quality metrics

• Monitor the variation of code metrics, coding rule violations, and run-time
checks through the lifecycle of a project

• View defect numbers, run-time reliability of the software, review progress,
and the status of the code with respect to software quality objectives.

In addition, if you have the Polyspace Client™ for C/C++ product installed
on your computer, you can drill down to coding rule violations and run-time
checks in the Polyspace verification environment. This allows you to:

• Review coding rule violations

• Review run-time checks and, if required, classify these checks as defects

For more information, see Software Quality with Polyspace Metrics in the
Polyspace Products for C/C++ User’s Guide or Polyspace Products for C++
User’s Guide.

195

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/bsnwcop-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html

R2010b

Automatic Verification

Configure verifications to start automatically and periodically, for example, at
a specific time every night. At the end of each verification, the software stores
results in a results repository and updates the metrics for your software
project. You can also configure the software to send you an email at the end
of the verification. This email contains links to results, compilation errors,
run-time errors, or processing errors.

For more information, see Specifying Automatic Verification in the Polyspace
Products for C/C++ User’s Guide or Polyspace Products for C++ User’s Guide.

196

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/bsnwcop-3.html#bsnwcop-4
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html

Operating System Support

Operating System Support

Added support for the Windows 7 operating system.

Solaris operating system is no longer supported for new installations.

For more information, see the Polyspace Installation Guide.

197

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brvjckt-1.html

R2010a
Version: 7.2
New Features: Yes
Bug Fixes: Yes

199

R2010a

Polyspace Client for C/C++ Product

200

License Activation

License Activation

Polyspace products now support the MathWorks software activation
mechanism.

Activation is a process that verifies licensed use of MathWorks® products. The
process validates your product licenses. You must complete the activation
process before you can use Polyspace software.

Note If you are using Designated Computer (Individual) licenses, you must
activate the license for each Polyspace system individually. However, if you
are using Concurrent licenses for multiple Polyspace systems, you do not
need to activate each Polyspace system. You activate the license once (for the
FLEXnet license server), then provide license files for each Polyspace system.

The easiest way to activate the software is to log in to your MathWorks
Account during installation. At the end of the installation process, the
Polyspace Software Activation dialog box opens.

201

R2010a

Follow the prompts in the Polyspace Software Activation dialog box to
complete the activation process.

If you do not have a MathWorks account, you can create one during the
activation process. To create an account, you must have an Activation Key,
which identifies the license you want to install and activate.

If your Polyspace system is not connected to the internet, you can access the
MathWorks License Center on a computer with internet access, activate your
license, and download a license file for transfer to your Polyspace system. If
you do not have access to a computer with an Internet connection, contact
Customer Support.

For more information on how to activate your software, see Activating
Polyspace Softwarein the Polyspace Installation Guide.

For more information on software activation, including frequently asked
questions, refer to the MathWorks Web site:
www.mathworks.com/support/activation/polyspace.html

202

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brhnuz0.html#bse5qz6-1
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brhnuz0.html#bse5qz6-1
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brvjckt-1.html
http://www.mathworks.com/support/activation/polyspace.html

MISRA C++ Checker

MISRA C++ Checker

Polyspace software can now analyze your C++ code to check compliance with
the MISRA C++ coding standard.

The Polyspace MISRA C++ checker provides messages when MISRA C++
rules are not respected. Most messages are reported during the compile phase
of a verification.

The MISRA C++ checker can check 167 of the 183 statically enforceable
MISRA C++ coding rules.

Note The Polyspace MISRA C++ checker is based on MISRA C++:2008 –
“Guidelines for the use of the C++ language in critical systems." For more
information on these coding standards, see http://www.misra-cpp.com.

For more information, see Checking Coding Rules, in the PolySpace
Client/Server for C++ User Guide.

203

http://www.misra-cpp.com/

R2010a

Source Code Comments

Polyspace software now allows you to place comments in your code that
provide information about known coding rule violations and run-time errors.
You can use these comments to

• Hide or highlight known coding rule violations.

• Highlight and categorize previously identified run-time errors.

This information can then make the review process quicker and easier by
allowing you to focus on new coding rule violations and run-time errors. .

When you review verification results, the Viewer displays comments on
individual checks. You can then skip these commented checks, or simply use
them as additional information during your review.

The coding rules log in the Launcher displays comments regarding coding
rules. You can use these comments to filter out commented violations from
the results, or simply to provide additional information on specific violations.

For more information, see Highlighting Known Coding Rule Violations and
Run-Time Errors in the PolySpace Products for C User’s Guide.

204

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/bsfjw9c.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/bsfjw9c.html

Importing Review Comments

Importing Review Comments
Compatibility Considerations: Yes

New Import/Export checks and comments report allows you to you to compare
the source code and verification results from a previous verification to the
current verification, and highlights differences in the results.

Importing review comments from a previous verification can be extremely
useful, since it allows you to avoid reviewing checks twice, and to compare
verification results over time. However, if your code has changed since the
previous verification, or if you have upgraded to a new version of the software,
the imported comments may not be applicable to your current results. For
example, the color of a check may have changed, or the justification for an
orange check may no longer be relevant to the current code.

Use the Import/Export checks and comments report to highlight these
differences, and focus on unreviewed results.

For more information, see Importing and Exporting Review Comments in the
Polyspace Products for C/C++ User’s Guide.

205

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br_e_w8.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html

R2010a

Compatibility Considerations

In previous releases, when you specified the option -keep-all-files, it
was possible to add comments to the results for a specific verification level
(for example, pass2) , and then import them into another set of results (for
example pass4) in the same results folder.

This is no longer possible in R2010a.

206

Data Range Specifications (DRS) Enhancements

Data Range Specifications (DRS) Enhancements
Compatibility Considerations: Yes

Enhanced Data Range Specifications, including new format and workflow.

The Polyspace Data Range Specifications (DRS) feature now allows you to set
constraints on data ranges using a new graphical user interface. When you
enable the DRS feature, Polyspace software analyzes the files in your project,
and generate a DRS template containing all the global variables, user defined
functions, and stub functions for which you can specify data ranges.

To specify data ranges, you then edit this template using the Polyspace DRS
configuration interface.

207

R2010a

In addition, the DRS feature now allows you to specify constraints for
additional types of data, including:

• Input parameters for user-defined functions called by the main generator

• Static variables

• Pointers (C only)

For more information, see Specifying Data Ranges for Variables and Functions
(Contextual Verification) in the PolySpace Products for C User’s Guide.

208

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br1kt1e.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br1kt1e.html

Data Range Specifications (DRS) Enhancements

Compatibility Considerations

Symbols ranged by DRS (init, permanent or globalassert mode) are no
longer ignored by the main-generator. This can lead to differences in values
and colors, for example full range instead of 0, or orange instead of green.

209

R2010a

Pointer Information in the Viewer

Enhanced ToolTips in the Viewer now display pointer information, in addition
to data ranges.

The software now provides, through tooltip messages, useful information
about pointers to variables or functions. You see this information in the
source code view when you place your cursor over a pointer, dereference
character, function call, or function declaration. In addition, if you click a
pointer check, dereference character, function call, or function declaration,
the software displays pointer information in the selected check view.

For more information, see Using Pointer Information in Results Manager
Perspective in the PolySpace Products for C User’s Guide.

210

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brzsavx-1.html#bsgt_ij
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brzsavx-1.html#bsgt_ij

Enhanced Call Tree View and Variables View (Data Dictionary)

Enhanced Call Tree View and Variables View (Data
Dictionary)

Enhanced user interface of the Call Tree View and Variables View improves
navigation and usability.

In the Call Tree View, you can now double click any function call to go directly
to the function definition.

In the Variables View, you can now right-click a variable to show legend
information, and can open the concurrent access graph for a variable directly
from the Variables View.

211

R2010a

For more information, see Exploring the Results Manager Perspective in the
PolySpace Products for C User’s Guide.

212

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brz384r-1.html#brz384r-9

Enhanced Search Function in Viewer

Enhanced Search Function in Viewer

Enhanced Search feature in the Viewer improves navigation in your results.

The Viewer toolbar now contains a Search interface. This allows you to quickly
enter search terms, specify search options, and set the scope for your search.

For more information, see Exploring the Results Manager Perspective in the
PolySpace Products for C User’s Guide.

213

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brz384r-1.html#brz384r-9

R2010a

Filtering Orange Checks in Viewer (C only)

Polyspace verification now identifies orange checks caused by input data. The
software provides additional information on these orange checks, and allows
you to hide them in the Viewer.

Note Although this type of orange check could reveal a bug, they usually do
not.

Verification can identify orange checks caused by:

• Stubs

• Main-generator calls

• Volatile variables

• Extern variables

• Absolute address

When the software identifies this type of orange check, the Viewer provides
information on its cause.

The Polyspace code verification log file also lists possible sources of
imprecision for orange checks.

214

Filtering Orange Checks in Viewer (C only)

In addition, you can now hide these types of orange checks in the Viewer.
When using Expert mode, click the filter button to hide oranges impacted by
input data.

#��������
�
�
�!	
����������	���

For more information, see Working with Orange Checks Caused by Input
Data in the PolySpace Products for C User’s Guide.

215

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br2lvf5.html#bsg66w2-1
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br2lvf5.html#bsg66w2-1

R2010a

Methodological Assistant Enhancements
Compatibility Considerations: Yes

Enhanced Methodological Assistant in the Viewer.

The Methodological Assistant now allows you to define either a minimum
percentage of orange checks to review, or a specific number of orange checks
to review. This makes it easier to set specific quality criteria for your code at
each level of review.

In addition, the Methodological Assistant now presents checks in a more
logical order. Checks that are most likely to reveal bugs appear first, while
non-useful checks no longer appear.

The new order of checks is:

1 All red checks (an error always occurs)

2 Orange checks known to produce errors in some situations (dark orange).
For example, red for one call to a procedure and green for another.

3 Some gray checks (UNR checks)

4 Other orange checks (depending on the methodology and criterion level)

Most gray checks no longer appear in the Methodological Assistant, since
reviewing many gray checks that occur after a red check is not useful. Only
UNR checks that are not nested within dead code blocks appear in assistant
mode.

Compatibility Considerations

The number of checks presented for review in Assistant mode is different than
in previous releases, since most gray checks no longer appear. In addition,
the order in which you review checks is different.

216

Class Analyzer Enhancements for C++

Class Analyzer Enhancements for C++
Compatibility Considerations: Yes

Enhanced class analyzer can analyze a file with more than one class.

Unit-by-unit verifications can now verify files containing more than one class.
Every class and function out of class contained in such files is now verified.

For more information, see PolySpace Class Analyzer in the PolySpace
Client/Server for C++ User Guide.

Compatibility Considerations

In -unit-by-unit mode, files that previously were not verified because they
contained more than one class are now verified.

217

R2010a

Change to Time Format in Log File
Compatibility Considerations: Yes

The time format reported in the log file has been updated to provide more
information.

Example of new line (R2010a and later):
User time for polyspace-c: 00:02:24 (144.6real, 144.6u + 0s
(0.3gc))

Example of old line (R2009b and earlier):
User time for rte-kernel: 4684.4real, 4319.2u + 324.6s (0.3gc)

Compatibility Considerations

The new time format can impact some scripts that summarize information
from the log file.

218

Merging of OVFL and UNFL Checks

Merging of OVFL and UNFL Checks
Compatibility Considerations: Yes

Overflow (OVFL) and underflow (UNFL) checks have been merged into a single
OVFL check. This reduces the number of orange checks you need to review,
while continuing to provide the same information.

For red and orange checks, the check message provides the bounds that cause
the overflow.

Compatibility Considerations

The Selectivity rate of your results may change when compared to previous
versions of the software. Underflows and overflows are now identified as a
single check, so the Selectivity will decrease if the checks were green (2 green
checks become 1 green), but will increase if the checks were both orange (2
orange checks become 1 orange).

219

R2010a

Improved UNR Checks
Compatibility Considerations: Yes

Enhanced unreachable code (UNR) checks now provide additional information
to help you understand the results. UNR checks now include information on:

• Localization of condition

• Type of condition

• End of block localization

For example:

// UNR (unreachable code) => UNR (unreachable code) \
(end of block at line YYY)

// UNR (unreachable code) => UNR (unreachable code) \
(condition at line XXX, column AAA) ?

In addition, verification now reports new UNR checks on:

• unreachable statements after return, break, goto, and continue
statements.

• if statements when the if condition is always true and if there is no
else statement.

For more information on these new checks, see “Changes to Verification
Results” on page 221.

Compatibility Considerations

The number of checks in your verification results may change due to the
new UNR checks.

220

Changes to Verification Results

Changes to Verification Results
Compatibility Considerations: Yes

• “Merging of OVFL and UNFL Checks” on page 222

• “New Gray (UNR) Checks on return, break, goto, and continue
Statements” on page 222

• “New Gray (UNR) Check on If Statement Without Else” on page 222

• “Nested Gray (UNR) Checks No Longer Appear in Reports” on page 223

• “Dead Code on Else Branch” on page 223

• “Data Ranges for Fields of Structures (C)” on page 224

• “Functions Called Before Main in Unit-by-unit Verification (C++)” on page
224

• “Main Generator Initialization of Function Pointers” on page 225

• “OVFL Check on Array Index Removed” on page 225

• “IDP Check on Local Member Access Removed (C++)” on page 226

• “OBAI Check on Dynamic Initialization of Array Removed (C++)” on page
226

• “Duplicate Checks in For/While Loops Removed” on page 227

• “malloc(0) Limitation Removed” on page 227

• “Change in OOP on Deletion of Null Pointer (C++)” on page 228

• “Change to IDP Check When Accessing a Field of an Inherited Class (C)”
on page 228

Compatibility Considerations

Verification results may change when compared to previous versions of the
software. Some checks may change color, and the Selectivity rate of your
results may change.

Refer to the following sections for information on the specific changes.

221

R2010a

Merging of OVFL and UNFL Checks
Overflow (OVFL) and underflow (UNFL) checks have been merged into a
single OVFL check. This reduces the number of orange checks you need to
review, while continuing to provide the same information.

For red and orange checks, the check message provides the bounds that cause
the overflow.

The Selectivity rate of your results may change when compared to previous
versions of the software.

New Gray (UNR) Checks on return, break, goto, and continue
Statements
Verification now reports gray UNR checks on unreachable statements after
return, break, goto, and continue statements.

For example:

67 switch (counter) {
68 case 0:
69 counter = 0;
70 break;
71 case 1:
72 counter = 2;
73 break;
74 counter = 2; /* unreachable code ! */
75 break;

The number of checks in your verification results may increase due to these
new UNR checks.

New Gray (UNR) Check on If Statement Without Else
Verification now reports a gray UNR check on an if statement when the if
condition is always true and if there is no else statement.

This allows you to find if branches that are always reachable, even when
there is no else.

222

Changes to Verification Results

For example:

if (true()) // UNR if-condition always evaluates to true
{
// ...

}

The number of checks in your verification results may increase due to new
UNR checks.

Nested Gray (UNR) Checks No Longer Appear in Reports
Nested UNR checks in unreachable blocks no longer appear in the
Methodological Assistant, or in generated reports.

The number of checks in generated reports may decrease due to elimination
of these checks..

Dead Code on Else Branch
Verification now reports gray UNR checks on empty branches.

For example:

void fct (void)
{
int a = 1;
if (a){
a++;

}
else // ==> Now gray UNR
{
// dummy
}

}

The number of checks in your verification results may increase due to the
new UNR check on empty branches.

223

R2010a

Data Ranges for Fields of Structures (C)
Symbols ranged by DRS (init, permanent or globalassert mode) are now
considered by the main-generator.

In previous releases, if DRS provided ranges for some fields of a structure, the
other fields (not ranged by DRS) were not initialized by the main-generator,
and therefore had an initial value of 0.

For example:

// DRS: s.x 0 10 init

struct { int x; int y; } s;
int foo(void)
{

return s.y; // y value: 0, full-range expected
}

Symbols ranged by DRS are no longer ignored by the main-generator. This
can lead to differences in values and colors, for example full range instead of
0, or orange instead of green.

Functions Called Before Main in Unit-by-unit Verification (C++)
The behavior of the option -function-called-before-main has changed for
unit-by-unit verifications of C++ code.

When you set the option -function-called-before-main in unit-by-unit
mode:

• If the init function is an out of class function, it is called at the beginning
of the generated main (before calls to constructors).

• If the init function is a method, it is called after all constructor calls of the
corresponding class.

In previous releases, the init function was always called after constructor
calls for each class.

Verification results may change when compared to previous versions of the
software, due to changes in the call sequence.

224

Changes to Verification Results

Main Generator Initialization of Function Pointers
The main-generator now initializes function pointers with default-mode stubs
instead of pure stubs.

In previous releases, the main-generator initialized function pointers with
pointers to pure functions.

This change may lead to differences in the color of checks in your results.
For example:

int x;
s->fptr(&x);
read(x); // LNIV red with 9b -> orange with 10a

OVFL Check on Array Index Removed
In previous releases, verification reported an overflow (OVFL) check on
pointer/array dereference. However, this overflow never occurred if there was
an OBAI problem first. Therefore, the check was not useful.

In R2010a, the OVFL check no longer appears on array index, the check has
been merged into the OBAI check.

For example, in the following code there is no OVFL check on the array index.

int main(void)
{

volatile int i,x;
int tab[10];

x = tab[i];

}

The Selectivity of your results may change when compared to previous
versions of the software. The OVFL check on array access has been merged
into the OBAI check, so there are fewer checks reported. Selectivity will
increase if the overflow check was orange, but will decrease if the OVFL
check was green.

225

R2010a

IDP Check on Local Member Access Removed (C++)
Verification no longer reports an IDP check on local member access.

In previous releases, verification reported an IDP check. This IDP appeared
on the “.” when accessing the field of an object returned by copy construction.

For example:

struct C {
C(const C&c1) { k =c1.k; }
C() { k = 0 ;}
int k ;

} ;

C g() {
C ret ;
ret.k = 2 ; // IDP on "." here
return ret;

}

int main() {
C c = g() ;

}

However, this check was caused by an internal pointer and was not useful.

The Selectivity of your results may change when compared to previous
versions of the software.

OBAI Check on Dynamic Initialization of Array Removed (C++)
Verification no longer reports an OBAI check on dynamic initialization of
array.

In previous releases, verification reported an OBAI check. The OBAI check
appeared on dynamic initialization of array with an aggregate.

For example:

nt main(void)

226

Changes to Verification Results

{
float tab[] = // extra green obai check

{
4.3,
0.0F

};

return 0;
}

However, this check was caused by an internal translation and was not useful.

The Selectivity of your results may change when compared to previous
versions of the software.

Duplicate Checks in For/While Loops Removed
Verification no longer reports duplicate checks in condition expression of
for and while loops.

Any duplicate checks on a loop condition are now merged in a single check,
except when condition expression is complex.

Due to the reduction in the number of checks, the selectivity of your results
may change when compared to previous versions of the software.

malloc(0) Limitation Removed
Verification no longer has a limitation when malloc(0) returns a null pointer.

In previous releases, verification reported a green check on the following code:

assert(malloc(0) == NULL) ;

However, this construction could fail. The software now verifies this
construction.

Verification results may change when compared to previous versions of the
software.

227

R2010a

Change in OOP on Deletion of Null Pointer (C++)
Verification no longer reports a red OOP check when deleting a null pointer.

In previous releases, verification reported a red OOP check on the following
code:

struct A {
virtual void f() { }
~A() { }

} ;

int main() {
A* pa ;
if (0) pa = (A*) 0Xfff;
pa = 0;
delete pa ; // red OOP

}

However, calling "delete" on a null pointer is allowed. The red OOP when
deleting a null pointer is now gray.

Verification results may change when compared to previous versions of the
software.

Change to IDP Check When Accessing a Field of an Inherited
Class (C)
Verification no longer reports a red IDP check when accessing a field of an
inherited class with an mcpu target.

In previous releases, verification reported a red IDP check.

For example:

struct Val {
int val;

};

struct Left : virtual Val {
int left;

228

Changes to Verification Results

virtual int get_left() { return left; } // polymorphic:yes
};

struct Right : virtual Val {
int right;
virtual int get_right() { return right; }

};

struct S : Left, Right { // multiple:yes
};

S s = S();
Left& le = s; // intermediate:global, reference:yes
Right& re = s; // intermediate:global, reference:yes

int main(void){
assert(re.val == 0); // Unexpected red IDP

}

However, this was not actually an error. The check is no longer red.

The color of the IDP check has changed when compared to previous versions
of the software.

229

R2010a

Changes to Coding Rules Checker Results
Compatibility Considerations: Yes

• “MISRA-C Rule 10.1 Violations on Constant Operands” on page 230

• “MISRA-C Rule 12.5 Violation Report Improved” on page 231

• “MISRA-C Rule 7.1 Violations on File Names of Preprocessed Files” on
page 231

• “MISRA-C Rule 5.4 Violations on Anonymous Structures and Unions” on
page 231

• “JSF Rule AV-151 Violations on Evaluation of Constant” on page 231

Compatibility Considerations

Due to changes in the coding rules checker, the number of coding rule
violations may change when compared to previous versions of the software.

Refer to the following sections for information on the specific changes.

MISRA-C Rule 10.1 Violations on Constant Operands
The MISRA-C checker no longer reports errors for rule 10.1, “The value of
an expression of integer type shall not be implicitly converted to a different
underlying type,” for certain constructions. For example:

int i;
for (i = 0; i < 12; i++)

An integer constant that fits into the size of a char is now seen as a signed
char whatever the sign of char (this depends on the selected target or is
set by option).

If you use the options -target powerpc or -default-sign-of-char
unsigned, the coding rules checker will report fewer violations of MISRA-C
rule 10.1 on constant operands.

230

Changes to Coding Rules Checker Results

MISRA-C Rule 12.5 Violation Report Improved
The coding rules checker now reports a column number for violations of
MISRA-C rule 12.5.

You may see more violations of rule 12.5, since two violations that occur on
same line but in different columns are now identified separately.

MISRA-C Rule 7.1 Violations on File Names of Preprocessed
Files
The coding rules checker no longer reports violations of MISRA-C rule 7.1
on the names of internal preprocessing files. These violations occurred in
projects containing Japanese characters.

You may see fewer violations of rule 7.1 in MISRA reports.

MISRA-C Rule 5.4 Violations on Anonymous Structures and
Unions
The coding rules checker no longer reports violations of MISRA-C rule 5.4 on
anonymous struct/union fields.

You may see fewer violations of rule 5.4 in MISRA reports.

JSF Rule AV-151 Violations on Evaluation of Constant
The coding rules checker no longer reports violations of JSF rule AV-151
on internal evaluation of a constant value, for example when there is an
expression in an enum list.

You may see fewer violations of rule AV-151 in JSF reports.

231

R2010a

Enumerated Types Support

The option -enum-type-definition allows verification to use different base
types to represent an enumerated type, depending on the enumerator values
and the selected definition.

When using this option, each enum type is represented by the smallest
integral type that can hold all its enumeration values.

Possible values are:

• defined-by-standard.

• auto-signed-first.

• auto-unsigned-first

For more information, see Enum type definition (-enum-type-definition) in the
PolySpace Products for C Reference.

232

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/brj7vi6-56.html#bshcltl

New Target Processor Support

New Target Processor Support

Added support for the c18 24-bit target processor (C only).

For more information, see Predefined Target Processor Specifications in the
PolySpace Products for C Reference.

233

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br1ktk9-33.html#br1ktk_-36

R2010a

Operating System Support

Added support for the following Linux distributions:

• OpenSuSE 11.1

• Debian 5.x

• Ubuntu 8.04, 8.10, 9.04, and 9.10

For more information, see the Polyspace Installation Guide.

234

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brvjckt-1.html

Polyspace® Server™ for C/C++ Product

Polyspace Server for C/C++ Product

235

R2010a

License Activation

Polyspace products now support the MathWorks software activation
mechanism.

Activation is a process that verifies licensed use of MathWorks products. The
process validates your product licenses. You must complete the activation
process before you can use Polyspace software.

Note If you are using Designated Computer (Individual) licenses, you must
activate the license for each Polyspace system individually. However, if you
are using Concurrent licenses for multiple Polyspace systems, you do not
need to activate each Polyspace system. You activate the license once (for the
FLEXnet license server), then provide license files for each Polyspace system.

The easiest way to activate the software is to log in to your MathWorks
Account during installation. At the end of the installation process, the
Polyspace Software Activation dialog box opens.

236

License Activation

Follow the prompts in the Polyspace Software Activation dialog box to
complete the activation process.

If you do not have a MathWorks account, you can create one during the
activation process. To create an account, you must have an Activation Key,
which identifies the license you want to install and activate.

If your Polyspace system is not connected to the internet, you can access the
MathWorks License Center on a computer with internet access, activate your
license, and download a license file for transfer to your Polyspace system. If
you do not have access to a computer with an Internet connection, contact
Customer Support.

For more information on how to activate your software, see Activating
Polyspace Softwarein the Polyspace Installation Guide.

For more information on software activation, including frequently asked
questions, refer to the MathWorks Web site:
www.mathworks.com/support/activation/polyspace.html

237

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brhnuz0.html#bse5qz6-1
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brhnuz0.html#bse5qz6-1
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brvjckt-1.html
http://www.mathworks.com/support/activation/polyspace.html

R2010a

Queue Manager Interface

The Polyspace Queue Manager Interface (Spooler) is now available on Linux
machines, providing a graphical interface for managing verification jobs on
the Polyspace server.

For more information, see Managing Verification Jobs Using the Polyspace
Queue Managerin the Polyspace Products for C/C++ User’s Guide or Polyspace
Products for C++ User’s Guide.

238

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/br0l3p7-6.html#br0l3p7-8
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/br0l3p7-6.html#br0l3p7-8
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ug/ug_intropage.html

Operating System Support

Operating System Support

Added support for the following Linux distributions:

• OpenSuSE 11.1

• Debian 5.x

• Ubuntu 8.04, 8.10, 9.04, and 9.10

For more information, see the Polyspace Installation Guide.

239

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brvjckt-1.html

R2009b
Version: 7.1
New Features: Yes
Bug Fixes: Yes

241

R2009b

Polyspace Client for C/C++ Product

242

Report Generator

Report Generator

New Report Generator that presents Polyspace results in PDF, HTML, and
other output formats.

The Polyspace Report Generator allows you to generate reports about your
verification results, using the following predefined report templates:

• Coding Rules Report – Provides information about compliance with
MISRA-C Coding Rules, as well as Polyspace configuration settings for
the verification.

• Developer Report – Provides information useful to developers, including
summary results, detailed lists of red, orange, and gray checks, and
Polyspace configuration settings for the verification.

• Developer with Green Checks Report – Provides the same content as
the Developer Report, but also includes a detailed list of green checks.

• Quality Report – Provides information useful to quality engineers,
including summary results, statistics about the code, graphs showing
distributions of checks per file, and Polyspace configuration settings for
the verification.

The Polyspace Report Generator allows you to generate verification reports in
the following formats:

• HTML

• PDF

• RTF

• Microsoft Word

• XML

Note Microsoft Word format is not available on UNIX platforms. RTF format
is used instead.

243

R2009b

For more information, see Generating Reports of Verification Results in the
Polyspace Products for C/C++ User’s Guide.

244

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brz384r-38.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html

Viewer Enhancements

Viewer Enhancements

Enhanced Viewer displays results with tooltips containing the values of
variables, operands, function parameters, and return values.

You can see range information associated with variables and operators within
the source code view.

Note The displayed range information represents a superset of dynamic
values, which the software computes using static methods.

If a line of code is all the same color, selecting the line opens an Expanded
Source Code window. Place your cursor over the required operator or variable
in this window to view range information.

If a line of code contains different colored checks, selecting a check displays
the error or warning message along with range information in the selected
check view.

For more information, see Using Range Information in the Results Manager
Perspective in the Polyspace Products for C/C++ User’s Guide.

245

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brzsavx-1.html#br8s5if
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brzsavx-1.html#br8s5if
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html

R2009b

Global Data Graphs

New Graphs (similar to concurrent access graphs) available for all global data.

You can display the access sequence for any variable that is read or written in
the code. The access graph displays the read and write access for the variable.

For more information, see Displaying the Access Graph for Variables in the
Polyspace Products for C/C++ User’s Guide.

246

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brz384r-12.html#br77__q-1
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html

Unit-by-unit Verification

Unit-by-unit Verification

New option to create a separate verification job for each source file in the
project.

When you run a unit-by-unit verification, each source file is compiled, sent
to the Polyspace Server, and verified individually.

The queue manager displays a job for the full verification group, as well as
jobs for each unit (using a tree structure).

When verification is complete, you can download and view results for the
entire project, or for individual units. When downloading a verification group,
all the unit results are downloaded and a summary of the download status for
each unit is displayed.

Note Unit by unit verification is available only for server verifications.

For more information, see Running Verification Unit-by-Unit in the PolySpace
Products for C Reference.

247

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br0l3p7-6.html#br_qxlv-1

R2009b

Changes to Coding Rules Checker Results
Compatibility Considerations: Yes

• “MISRA-C Rule 5.1 Analysis Improved” on page 248

• “MISRA-C Rule 5.2 Analysis Improved” on page 248

• “MISRA-C Rule 5.7 Analysis Improved” on page 248

• “MISRA-C Rule 8.10 Analysis Improved” on page 249

• “MISRA-C Rule 10.1 Analysis Relaxed” on page 249

• “MISRA-C Rule 10.5 Analysis Improved” on page 249

• “MISRA-C Rule 12.7 Analysis Improved” on page 249

• “MISRA-C Rule 15.0 Analysis Improved” on page 249

• “MISRA-C Rule 16.4 Analysis Improved” on page 249

Compatibility Considerations

Due to changes in the coding rules checker, the number of coding rule
violations may change when compared to previous versions of the software.

Refer to the following sections for information on the specific changes.

MISRA-C Rule 5.1 Analysis Improved
The coding rules checker now applies MISRA-C rule 5.1 to all identifiers
external and internal.

MISRA-C Rule 5.2 Analysis Improved
The coding rules checker now detects violations of MISRA-C Rule 5.2 when the
declaration in the outer scope occurs after the declaration in the inner scope.

MISRA-C Rule 5.7 Analysis Improved
The coding rules checker now detects violations of MISRA-C Rule 5.7 in local
reused identifiers.

248

Changes to Coding Rules Checker Results

MISRA-C Rule 8.10 Analysis Improved
Only the last declaration takes precedence for static or extern. The coding
rules checker no longer reports violations of MISRA-C Rule 8.10 if the last
declaration is static.

MISRA-C Rule 10.1 Analysis Relaxed
The coding rules checker has relaxed enforcement of MISRA-C Rule 10.1 for x
in [x] for any type of expression x.

MISRA-C Rule 10.5 Analysis Improved
The coding rules checker now detects violations of MISRA-C Rule 10.5 in
expressions with constants.

For example:

c = (uint8_t)(ui8 << (1U << 2U));

MISRA-C Rule 12.7 Analysis Improved
The coding rules checker now detects violations of MISRA-C Rule 12.7 in
expressions with constants.

For example:

~(i=1);

MISRA-C Rule 15.0 Analysis Improved
The coding rules checker now detects violations of MISRA-C Rule 15.0 in all
statements between switch and first case clause (label, harmless statement).

In addition the coding rules checker now detects jumps and label statements.

MISRA-C Rule 16.4 Analysis Improved
The coding rules checker now keeps the names of the parameters of the first
declaration, and reports violations of MISRA-C Rule 16.4 for each occurrence.

249

R2009b

Operating System Support

Added support for Windows Server® 2008.

For more information, see the Polyspace Installation Guide.

250

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brvjckt-1.html

Polyspace® Server™ for C/C++ Product

Polyspace Server for C/C++ Product

251

R2009b

Operating System Support

Added support for Windows Server 2008.

For more information, see the Polyspace Installation Guide.

252

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brvjckt-1.html

R2009a
Version: 7.0
New Features: Yes
Bug Fixes: Yes

253

R2009a

Polyspace Client for C/C++ Product

254

JSF++ Support

JSF++ Support

Enhanced JSF C++ checker supports all checkable Joint Strike Fighter Air
Vehicle C++ coding standards (JSF++:2005).

Polyspace software can now check all possible C++ programming rules defined
by Lockheed Martin® for the JSF program. These coding standards are
designed to improve the robustness of C++ code, and improve maintainability.

For more information, see JSF C++ Checker, in the PolySpace Client/Server
for C++ User Guide.

255

R2009a

Back to Source Link

New “back-to-source” link in the Polyspace launcher associates compile
errors, MISRA-C violations, and JSF++ violations reported in the logs directly
to the source file.

For more information, see Viewing Coding Rules Checker Results in the
PolySpace Products for C User’s Guide or Examining the JSF Log, in the
PolySpace Client/Server for C++ User Guide.

256

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br2lc9n-11.html

Eclipse Integration

Eclipse Integration

New Polyspace integration with the Eclipse IDE, Version 3.3.

The Polyspace Client for C/C++ product can be integrated with the Eclipse
Integrated Development Environment through the Polyspace C/C++ plug-in
for Eclipse IDE.

This plug-in provides Polyspace source code verification and bug detection
functionality for source code developed within Eclipse IDE. Features include
the following:

• A contextual menu that allows you to launch a verification of one or more
files.

• Views in the Eclipse editor that allow you to set verification parameters
and monitor verification progress.

For more information, see Using Polyspace Software in the Eclipse IDE in the
PolySpace Products for C User’s Guide.

257

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/br0k7_3-1.html

R2009a

Performance Improvements for Multi-Core Systems

Enhanced performance on multi-core architecture platforms, improving the
speed of Polyspace code verification.

The time required to perform an average code verification has been reduced.
On multi-core systems, you can now select the number of processes that can
run simultaneously, further improving performance.

For more information, see Number of processes for multiple CPU core systems
(-max-processes) in the PolySpace Products for C Reference.

258

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/brj7vi6-56.html#br2et3i
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/brj7vi6-56.html#br2et3i

Architecture Improvements

Architecture Improvements
Compatibility Considerations: Yes

Several changes have been made to the Polyspace architecture to improve
overall performance, as well as the precision of verification results.

During each verification phase (pass), the software now only analyzes those
procedures that need to be analyzed. This means that starting with PASS1,
if the verification cannot be more precise than that already completed in a
previous pass, the procedure is not analyzed again. This improves the overall
performance of the verification. It also means that some passes will finish
more quickly than others, and some passes could be completely empty. This is
normal behavior.

In addition, these architecture improvements result in the following changes:

• The quick precision option is now obsolete, and has been removed. quick
mode has been replaced with verification PASS0. PASS0 takes somewhat
longer to run, but the results are more complete. The limitations of quick
mode, (no NTL or NTC checks, no float checks, no variable dictionary) no
longer apply. Unlike quick mode, PASS0 also provides full navigation in
the Viewer.

• The voa option is now obsolete, and has been removed. Value On
Assignment checks are now provided by default. In general, this means
that Polyspace results now contain many more VOA checks. For C
applications, all possible VOA are given.

• The UOVFL (Float Underflows and Overflows) check no longer exists.
Float underflows and overflows are now reported as two separate checks.
This is similar to the way integers are handled.

Note Since the single UOVFL check has been replaced by two checks,
the total number of checks reported by Polyspace on a given file may be
different in this release than with previous versions of the software.

• Messages have been improved for float arithmetic checks, making them
similar to the messages for integers. For example, NIV checks on float
variables now contain the type size (32 or 64).

259

R2009a

• For IPT (Inspection Point) checks, there is now one check for each variable.
Previously there was a single IPT check (on the keyword) for multiple
variables.

• The log file has several additions, including the names of each PASS, the
verification phases, and additional messages.

Compatibility Considerations

The verification results provided by Polyspace software may be different in
R2009a than with previous releases of the software. Verification results are
more precise, and the total number of checks reported on a given source file
may be different. In general, the software now reports more checks, due to
increased VOA checks, changes to the IPT check, and the single float UOVFL
check being replaced by two checks (UNFL and OVFL).

In addition, due to the float UOVFL check being split into two checks, the
selectivity (number of proven checks red+green+gray / number of total checks)
of a verification may change significantly for applications using many float
variables. For example, an application that had 10 orange UOVFL checks
with a previous release, could now have up to 20 orange UNFL and OVFL
checks on the same float variables. Although this appears to be a decrease in
precision, the verification itself is not less precise.

260

Mathematical Functions Included in Stubs

Mathematical Functions Included in Stubs
Compatibility Considerations: Yes

Mathematical functions are now included in the standard stubs. This means:

• An IRV (Initialized Return Value) check appears on the math function call.

• The POW check no longer appears in the Viewer.

• Math functions appear in the call graph.

• The modeling of mathematical functions is visible through the stub body,
instead of being handled internally.

• By default, math functions are launched with the option
-context-sensitivity , allowing them to distinguish their calling sites.

In addition, you can provide your own math functions instead of using the
standard stub provided by Polyspace software. This allows the software to
verify the body of the math function, instead of using a stub for the math
function.

For example, in C90, the mathematical function fabs() has the prototype:

double fabs(double) ;

However, on a 16-bit target, the function may have the prototype:

float fabs(float);

In this case, you would want to verify your own fabs() function.

To provide your own math function:

1 Create source code for the function. For example:

float fabs (float var)
{

if (var >= 0.0f)
return var;

return -var;
}

261

R2009a

2 Provide the function to your verification using the D compiler flag. For
example:

polyspace-c -D __polyspace_no_fabs

Note There is a compiler flag for each standard ANSI C90
mathematical function. A complete list of flags is located in the file:
%POLYSPACE_C%\Verifier\cinclude__polyspace__stdstubs.c.

Compatibility Considerations

Since the POW check no longer appears in the Viewer, verification results
may be different in R2009a than with previous releases of the software.

262

Character Encoding Options

Character Encoding Options

New character encoding option allows you to view source files created on an
operating system that uses different character encoding than your current
system.

You specify the character encoding used by the operating system on which the
source file was created using the Character encoding tab in the Preferences
dialog box of the Polyspace Viewer.

For more information, see Setting Character Encoding Preferences in the
PolySpace Products for C User’s Guide.

263

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brz384r-1.html#br2eii_

R2009a

Automatic Orange Tester
Compatibility Considerations: Yes

The Automatic Orange Tester (for C), dynamically stresses unproven code
(orange checks) to help you identify run-time errors.

For more information, see Automatically Testing Orange Code in the
Polyspace Products for C/C++ User’s Guide.

Compatibility Considerations

If you open verification results created with an older version of the product in
the Automatic Orange Tester, you may get a compilation error. The version of
the product used to create the instrumented source code must be the same as
the one used for analysis in the Automatic Orange Tester.

To avoid this problem, re-launch the code verification with the current version
of the product.

264

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brl686s.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/ug_intropage.html

Operating System Support

Operating System Support

Added support for Windows Server 2003, Windows Vista™, and Red Hat
Enterprise Linux Workstation v.5.

For more information, see the Polyspace Installation Guide.

265

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brvjckt-1.html

R2009a

Polyspace Server for C/C++ Product

266

Performance Improvements for Multi-Core Systems

Performance Improvements for Multi-Core Systems

Enhanced performance on multi-core architecture platforms, improving the
speed of Polyspace code verification.

The time required to perform an average code verification has been reduced.
On multi-core systems, you can now select the number of processes that can
run simultaneously, further improving performance.

For more information, see Number of processes for multiple CPU core systems
(-max-processes) in the Polyspace Products for C/C++ Referenceor Polyspace
Products for C++ Reference.

267

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/brj7vi6-56.html#br2et3i
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/brj7vi6-56.html#br2et3i
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ref/br0l0v3-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ref/br2nhqn-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/cpp_ref/br2nhqn-1.html

R2009a

Architecture Improvements
Compatibility Considerations: Yes

Several changes have been made to the Polyspace architecture to improve
overall performance, as well as the precision of verification results.

During each verification phase (pass), the software now only analyzes those
procedures that need to be analyzed. This means that starting with PASS1,
if the verification cannot be more precise than that already completed in a
previous pass, the procedure is not analyzed again. This improves the overall
performance of the verification. It also means that some passes will finish
more quickly than others, and some passes could be completely empty. This is
normal behavior.

In addition, these architecture improvements result in the following changes:

• The quick precision option is now obsolete, and has been removed. quick
mode has been replaced with verification PASS0. PASS0 takes somewhat
longer to run, but the results are more complete. The limitations of quick
mode, (no NTL or NTC checks, no float checks, no variable dictionary) no
longer apply. Unlike quick mode, PASS0 also provides full navigation in
the Viewer.

• The voa option is now obsolete, and has been removed. Value On
Assignment checks are now provided by default. In C, all possible VOA
are given.

• The UOVFL (Float Underflows and Overflows) check no longer exists.
Float underflows and overflows are now reported as two separate checks.
This is similar to the way integers are handled.

Note Since the single UOVFL check has been replaced by two checks,
the total number of checks reported by Polyspace on a given file may be
different in this release than with previous versions of the software.

• Messages have been improved for float arithmetic checks, making them
similar to the messages for integers. For example, NIV checks on float
variables now contain the type size (32 or 64).

268

Architecture Improvements

• For IPT (Inspection Point) checks, there is now one check for each variable.
Previously there was a single IPT check (on the keyword) for multiple
variables.

• The log file has several additions, including the names of each PASS, the
verification phases, and additional messages.

Compatibility Considerations

The verification results provided by Polyspace software may be different in
R2009a than with previous releases of the software. Verification results are
more precise, and the total number of checks reported on a given source file
may be different. In general, the software now reports more checks, due to
increased VOA checks, changes to the IPT check, and the single float UOVFL
check being replaced by two checks (UNFL and OVFL).

In addition, due to the float UOVFL check being split into two checks, the
selectivity (number of proven checks red+green+gray / number of total checks)
of a verification may change significantly for applications using many float
variables. For example, an application that had 10 orange UOVFL checks
with a previous release, could now have up to 20 orange UNFL and OVFL
checks on the same float variables. Although this appears to be a decrease in
precision, the verification itself is not less precise.

269

R2009a

Operating System Support

Added support for Windows Server 2003, Windows Vista, and Red Hat
Enterprise Linux Workstation v.5.

For more information, see the Polyspace Installation Guide.

270

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brvjckt-1.html

R2008b
Version: 6.0
New Features: Yes
Bug Fixes: Yes

271

R2008b

Polyspace Client for C/C++ Product

272

Automatic Orange Tester

Automatic Orange Tester

Automatic Orange Tester (for C), dynamically stresses unproven code (orange
checks) to identify run-time errors, and provides information to help you
identify the cause of these errors.

The Automatic Orange Tester complements the results review in the Viewer
module of Polyspace Client for C/C++ by automatically creating test cases
for all input variables in orange code, and then dynamically testing the
code to find actual runtime errors. The Automatic Orange Tester also
provides detailed information on why each test-case failed. You can use this
information to quickly identify the cause of the error, and determine if there
is an actual bug in the code.

For more information, see Automatically Testing Orange Code in the
PolySpace Client/Server for C User’s Guide.

273

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brl686s.html

R2008b

JSF++ Support

Support for a subset of the Joint Strike Fighter Air Vehicle C++ coding
standards (JSF++:2005).

Polyspace software can now check 120 of the C++ programming rules defined
by Lockheed Martin for the JSF program. These coding standards are
designed to improve the robustness of C++ code, and improve maintainability.

For more information, see JSF C++ Checker, in the PolySpace Client/Server
for C++ User Guide.

274

Operating System Support

Operating System Support

Added support for 64–bit Linux.

For more information, see the Polyspace Installation Guide.

275

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brvjckt-1.html

R2008b

Polyspace Server for C/C++ Product

276

Operating System Support

Operating System Support

Added support for 64–bit Linux.

For more information, see the Polyspace Installation Guide.

277

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brvjckt-1.html

R2008a
Version: 5.1
New Features: Yes
Bug Fixes: Yes

279

R2008a

Polyspace Client for C/C++ Product

280

Removed Cygwin™ Software Dependency for Windows® Platforms

Removed Cygwin Software Dependency for
Windows Platforms
Compatibility Considerations: Yes

Previous versions of Polyspace products used Cygwin™ emulation to run
UNIX® commands on Windows systems.

In version 5.1, the Cygwin software dependency has been removed. Removing
Cygwin simplifies the Polyspace product installation process while improving
the performance and robustness of the Polyspace Verification process.

Compatibility Considerations

Due to the Cygwin changes, Polyspace Client for C/C++ Version 5.1 is
not compatible with previous versions of Polyspace products on Windows
platforms. To avoid compatibility problems on Windows platforms, you must
upgrade all your Polyspace client and server products at the same time.

If your Polyspace server is running on a Windows platform, the binary files
used for batch commands in previous releases will not work without Cygwin
software installed. In version 5.1, the software provides new .exe files for these
batch commands. However, these files are now located in a different location.

Commands Previous Location New Location

Standard PolyspaceInstallDir\
verifier\bin\

PolyspaceInstallDir\
verifier\wbin\

Remote
Launcher

Polyspace_Common\
RemoteLauncher\bin\

Polyspace_Common\
RemoteLauncher\wbin\

Viewer Polyspace_Common\
Viewer\bin\

Polyspace_Common\
Viewer\wbin\

If you wrote scripts using batch commands in previous releases, you must
modify the scripts to use the new commands.

In addition, if you used Cygwin shell scripts for postprocessing or target
compilation, those scripts will no longer run on version 5.1. To support
scripting, the Polyspace software now includes Perl. You can access Perl in:

281

R2008a

PolyspaceInstallDir\verifier\tools\perl\win32\bin\perl.exe

282

Enhanced Installer

Enhanced Installer

Version 5.1 includes an enhanced and simplified installer for all Polyspace
products. The installation process is now faster and easier to complete than
in previous releases.

For more information, see the Polyspace Installation Guide.

283

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brvjckt-1.html

R2008a

Viewer Improvements

Enhanced exploring capability in the viewer to provide more precise locations
for C++ checks.

The source code view of the Polyspace viewer now displays the location of
C++ checks more accurately.

284

One-Click Enhancements

One-Click Enhancements

Enhanced Polyspace-In-One-Click options, to allow switching between
multiple projects using a browse history.

For more information, see Day to Day Use in the PolySpace Client/Server
for C User Guide.

285

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/c_ug/brjxlgt.html

R2008a

Generic Target Option for C++

New Generic Target option for C++, to allow custom target processors. The
Generic Target option for C++ is similar to the previous Generic Target for C.

For more information, see Defining Generic Targets in the PolySpace
Client/Server for C++ User Guide.

286

Class Analyzer Enhancements for C++

Class Analyzer Enhancements for C++

Enhanced class analyzer now calls all private constructors and destructors.

Previously, the sources analyzed were generally non-inherited public or
protected methods of the class. In version 5.1, the functions that are analyzed
include all non-inherited constructors and destructors, and all non-inherited
public or protected methods of the class.

For more information, see PolySpace Class Analyzer in the PolySpace
Client/Server for C++ User Guide.

287

R2008a

GNU Compiler Support for C++

New support for the GNU® compiler (GCC 3.4) for C++.

The new GNU dialect option supports variable length arrays, anonymous
structures, and other constructions allowed by GCC.

For more information, see Dialect Issues in the PolySpace Client/Server for
C++ User Guide.

288

Polyspace® C++ Add-in for Visual Studio®

Polyspace C++ Add-in for Visual Studio

Simplified user interface for Polyspace C++ add-in for Microsoft Visual Studio.

The Polyspace Browser tab has been eliminated from the Visual Studio
window. To perform an analysis of a file in Visual Studio, you now simply
right-click on the file and select Start Polyspace.

For more information, see Using PolySpace Software in Visual Studio in the
PolySpace Client/Server for C++ User Guide.

289

R2008a

Operating System Support

Added support for the following operating systems:

• Solaris 2.10

• Windows XP x64 (32-bit mode)

For more information, see the Polyspace Installation Guide.

290

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brvjckt-1.html

Polyspace® Server™ for C/C++ Product

Polyspace Server for C/C++ Product

291

R2008a

Removed Cygwin Software Dependency for
Windows Platforms
Compatibility Considerations: Yes

Previous versions of Polyspace products used Cygwin emulation to run UNIX
commands on Windows systems.

In version 5.1, the Cygwin software dependency has been removed. Removing
Cygwin simplifies the Polyspace product installation process while improving
the performance and robustness of the Polyspace Verification process.

Compatibility Considerations

Due to the Cygwin changes, Polyspace Server™ for C/C++ Version 5.1 is
not compatible with previous versions of Polyspace products on Windows
platforms. To avoid compatibility problems on Windows platforms, you must
upgrade all your Polyspace client and server products at the same time.

If your Polyspace server is running on a Windows platform, the binary files
used for batch commands in previous releases will not work without Cygwin
software installed. In version 5.1, the software provides new .exe files for these
batch commands. However, these files are now located in a different location.

Commands Previous Location New Location

Standard PolyspaceInstallDir\
verifier\bin\

PolyspaceInstallDir\
verifier\wbin\

Remote
Launcher

Polyspace_Common\
RemoteLauncher\bin\

Polyspace_Common\
RemoteLauncher\wbin\

Viewer Polyspace_Common\
Viewer\bin\

Polyspace_Common\
Viewer\wbin\

If you wrote scripts using batch commands in previous releases, you must
modify the scripts to use the new commands.

In addition, if you used Cygwin shell scripts for postprocessing or target
compilation, those scripts will no longer run on version 5.1. To support
scripting, the Polyspace software now includes Perl. You can access Perl in:

292

Removed Cygwin™ Software Dependency for Windows® Platforms

PolyspaceInstallDir\verifier\tools\perl\win32\bin\perl.exe

293

R2008a

Enhanced Installer

Version 5.1 includes an enhanced and simplified installer for all Polyspace
products. The installation process is now faster and easier to complete than
in previous releases.

For more information, see the Polyspace Installation Guide.

294

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brvjckt-1.html

GNU® Compiler Support for C++

GNU Compiler Support for C++

New support for the GNU compiler (GCC 3.4) for C++.

The new GNU dialect option supports variable length arrays, anonymous
structures, and other constructions allowed by GCC.

For more information, see Dialect Issues in the PolySpace Client/Server for
C++ User Guide.

295

R2008a

Operating System Support

Added support for the following operating systems:

• Solaris 2.10

• Windows XP x64 (32-bit mode)

For more information, see the Polyspace Installation Guide.

296

http://www.mathworks.com/help/releases/R2012a/toolbox/polyspace/polyspace_install/brvjckt-1.html

	toc
	R2013a
	Polyspace Client for C/C++ Product
	Modified Polyspace installer
	Improvements to coding rules checker
	Ignore header folders without source files option
	Summary of coding rule violations in verification log
	MISRA C rule behavior changed in R2012b

	Verification uses native binary file
	Negative pointer offset
	Exact representation of floating point numbers
	Option -function-called-before-main renamed
	Changes to verification results
	Changes to analysis options
	New options
	Changes to existing options

	Options removed

	Polyspace Server for C/C++ Product
	Improved Polyspace Metrics security with HTTPS

	R2012b
	Polyspace Client for C/C++ Product
	Review of verification results improvement
	Check filters in results summary view
	More filters for reviewing coding rule violations
	Justify and comment a group of checks
	Navigation improvements
	Variable values in tooltips
	Loop information in tooltips

	Accuracy improvements for MISRA rules checking
	Definition of custom coding rules
	Configuration of C/C++ rule checking
	Reorganized Configuration pane
	Code verification for very large applications
	Report content filtering
	Parent folder for verification results
	Support for relative paths
	Macro expansion in source code view
	Modifying or removing generic targets
	Improved COR check for function pointer
	Permissive function pointer calls
	Enhanced stub generation for Standard Library functions (C)
	Intermediate verification level support
	Analysis of public methods called by generated main
	DRS file generation for unit-by-unit verification
	Comments for generated DRS files
	Automatic import of comments and justifications
	Storage of temporary files
	Changes to verification results
	COR check

	Changes to coding rules checker results
	MISRA-C rule improvements

	Removal of Polyspace in One Click
	Changes to analysis options
	New options
	Changes to existing options

	Options removed

	Polyspace Server for C/C++ Product
	Password-protected access to projects in Polyspace Metrics
	Metrics for level 0 potential errors

	R2012a
	Polyspace Client for C/C++ Product
	Single Perspective for Coding Rule Violations and Run-Time Check
	Compilation Environment Templates
	Predefined Templates
	Custom Templates

	Suppression of NTC, NTL and UNR Checks Caused by Red Checks
	Probable Cause Information About Red and Orange Checks
	Enhanced MISRA-C Coding Rules Checker
	Integrated Compilation Assistant
	Data Range Specification Enhancements
	Redefinition of Successful Verification
	Polyspace Report Generator Enhancements
	Polyspace In One Click (POC) Enhancement
	Absolute Addresses
	Header Files Without Run-Time Checks and Coding Rule Violations
	Improved Access to Polyspace Demos
	Changes to Verification Results
	NTC and NTL Checks
	ABS_ADDR Check

	Changes to Coding Rules Checker Results
	New MISRA-C Rules Supported
	MISRA-C: Rule Improvements

	Changes to Analysis Options
	New Options
	Changes to Existing Options

	Options Removed

	Polyspace Server for C/C++ Product
	Enhanced Polyspace Metrics Project Index
	Redefinition of Successful Verification

	R2011b
	Polyspace Client for C/C++ Product
	STD_LIB Check
	Enhanced MISRA-C Coding Rules Checker
	Review Orange Checks that are Potential Run-Time Errors
	Display Sources of Orange Checks
	Enhanced Automatic Orange Tester
	No Gray Checks in Unreachable Code
	Global Variable Range Information
	Read and Write Access in Dead Code
	Run All Verifications in Project
	Specifying Functions Not Called by Generated Main
	Stubbing Specific Functions
	Changes to Verification Results
	Cross-block Critical Sections
	Function Pointers in extern const Structure Stubbed
	Pointers point to the Beginning of Allocated Objects

	Changes to Coding Rules Checker Results
	New MISRA-C Rules Supported
	MISRA-C: Rule 1.1 Messages
	MISRA-C: Rule 6.3 Improvements
	MISRA-C: Rule 17.6 Improvements

	Changes to Analysis Options
	New Options
	Changes to Existing Options

	Deprecated Options

	Polyspace Server for C/C++ Product
	Running Multiple Verifications Simultaneously
	Polyspace Metrics
	Review Changes between Results of Successive Verifications
	File Modules with Quality Levels
	Enhanced Graphs and Charts

	R2011a
	Polyspace Client for C/C++ Product
	Code Metrics (New for C++)
	Saving Polyspace Metrics Review
	Compilation Assistant
	Improved Search Function
	Back to Source Function in Run-Time Checks Perspective
	Structure Fields in Data Dictionary
	Overflow Check Customization
	Main Generator Improvements
	Verification Time Limit
	Continue Verification with Compile Errors
	Precision Improvements
	Permissive Mode Set By Default
	Default Project Location
	Variable Range Inconsistency between Variable Access Pane and To
	Visual Studio Integration
	Product Name Change in Files and Folders
	Visual Studio Support
	Eclipse IDE Support
	License Manager Support
	Changes to Verification Results
	Certain COR Checks Changing to OVFL
	COR Checks on Function Pointer
	NIV Check on Local Volatile Variables
	OVFL Checks on Assignment
	Precision Improvements for NIV Checks
	Precision Improvements on Arrays and Functions
	Compilation Errors for Classes without Constructors

	Changes to Coding Rules Checker Results
	MISRA C Rule 12.1 – Parentheses for Operand of Unary Operator.
	Single Rule Violation Reported Multiple Times

	Changes to Analysis Options
	New Options
	Changes to Existing Options
	Deprecated Options

	Polyspace Server for C/C++ Product
	Code Metrics (New for C++)
	Saving Polyspace Metrics Review
	Automatic Comment Import for Server Verifications
	License Manager Support

	R2010b
	Polyspace Client for C/C++ Product
	Polyspace Graphical User Interface
	Project Manager Perspective
	Coding Rules Perspective
	Run-Time Checks Perspective

	Permissiveness on File and Folder Names
	MISRA C++ Coding Rules Support
	Coding Rules Checker Enhancements
	Code Metrics (for C)
	Filtering Orange Checks Caused by Input Data (New for C++)
	New Options to Classify Run-Time Checks and Coding Rules Violati
	Japanese and Korean Text in Comments
	Pointer Information in the Run-Time Checks Perspective
	Main Generation in C++
	Multiple Functions Called Before Main
	Support for C99 Extensions (C)
	New Target Processor Support (C)
	Default Target Processor
	Default Operating System Target
	Include Folders Added to Verification by Default
	Operating System Support
	Changes to Verification Results
	New NIP Check on Pointer to Member Function
	Generated Main Calls in the Main Loop and init Function
	INF Checks Replaced by Value on Range (C++)
	Value on Range (VOR) Values in pass0 Results
	Changes in Behavior of Inline and Sensitivity Context Options
	Permissiveness on Delete of Pointer to Incomplete Class

	Changes to Coding Rules Checker Results
	MISRA and JSF Violations No Longer Reported on Internal Include
	MISRA-C++ Rule 2-10-2 Violations on Type Hidden by Using Directi
	MISRA-C++ Rules 2-10-4 and 2-10-6 Violations on Templates
	MISRA-C++ Rule 3-1-1 Duplicate Violations
	MISRA-C++ Rule 3-4-1 Violations on Local Variables
	MISRA-C++ Rule 7-4-3 Violations on Assembly Language
	MISRA-C++ Rule 12-1-1, 12-1-2, and 12-8-2 Violations
	JSF Rule AV-136 Violations on Local Variables

	Polyspace Server for C/C++ Product
	Polyspace Metrics Web Interface
	Automatic Verification
	Operating System Support

	R2010a
	Polyspace Client for C/C++ Product
	License Activation
	MISRA C++ Checker
	Source Code Comments
	Importing Review Comments
	Data Range Specifications (DRS) Enhancements
	Pointer Information in the Viewer
	Enhanced Call Tree View and Variables View (Data Dictionary)
	Enhanced Search Function in Viewer
	Filtering Orange Checks in Viewer (C only)
	Methodological Assistant Enhancements
	Class Analyzer Enhancements for C++
	Change to Time Format in Log File
	Merging of OVFL and UNFL Checks
	Improved UNR Checks
	Changes to Verification Results
	Merging of OVFL and UNFL Checks
	New Gray (UNR) Checks on return, break, goto, and continue State
	New Gray (UNR) Check on If Statement Without Else
	Nested Gray (UNR) Checks No Longer Appear in Reports
	Dead Code on Else Branch
	Data Ranges for Fields of Structures (C)
	Functions Called Before Main in Unit-by-unit Verification (C++)
	Main Generator Initialization of Function Pointers
	OVFL Check on Array Index Removed
	IDP Check on Local Member Access Removed (C++)
	OBAI Check on Dynamic Initialization of Array Removed (C++)
	Duplicate Checks in For/While Loops Removed
	malloc(0) Limitation Removed
	Change in OOP on Deletion of Null Pointer (C++)
	Change to IDP Check When Accessing a Field of an Inherited Class

	Changes to Coding Rules Checker Results
	MISRA-C Rule 10.1 Violations on Constant Operands
	MISRA-C Rule 12.5 Violation Report Improved
	MISRA-C Rule 7.1 Violations on File Names of Preprocessed Files
	MISRA-C Rule 5.4 Violations on Anonymous Structures and Unions
	JSF Rule AV-151 Violations on Evaluation of Constant

	Enumerated Types Support
	New Target Processor Support
	Operating System Support

	Polyspace Server for C/C++ Product
	License Activation
	Queue Manager Interface
	Operating System Support

	R2009b
	Polyspace Client for C/C++ Product
	Report Generator
	Viewer Enhancements
	Global Data Graphs
	Unit-by-unit Verification
	Changes to Coding Rules Checker Results
	MISRA-C Rule 5.1 Analysis Improved
	MISRA-C Rule 5.2 Analysis Improved
	MISRA-C Rule 5.7 Analysis Improved
	MISRA-C Rule 8.10 Analysis Improved
	MISRA-C Rule 10.1 Analysis Relaxed
	MISRA-C Rule 10.5 Analysis Improved
	MISRA-C Rule 12.7 Analysis Improved
	MISRA-C Rule 15.0 Analysis Improved
	MISRA-C Rule 16.4 Analysis Improved

	Operating System Support

	Polyspace Server for C/C++ Product
	Operating System Support

	R2009a
	Polyspace Client for C/C++ Product
	JSF++ Support
	Back to Source Link
	Eclipse Integration
	Performance Improvements for Multi-Core Systems
	Architecture Improvements
	Mathematical Functions Included in Stubs
	Character Encoding Options
	Automatic Orange Tester
	Operating System Support

	Polyspace Server for C/C++ Product
	Performance Improvements for Multi-Core Systems
	Architecture Improvements
	Operating System Support

	R2008b
	Polyspace Client for C/C++ Product
	Automatic Orange Tester
	JSF++ Support
	Operating System Support

	Polyspace Server for C/C++ Product
	Operating System Support

	R2008a
	Polyspace Client for C/C++ Product
	Removed Cygwin Software Dependency for Windows Platforms
	Enhanced Installer
	Viewer Improvements
	One-Click Enhancements
	Generic Target Option for C++
	Class Analyzer Enhancements for C++
	GNU Compiler Support for C++
	Polyspace C++ Add-in for Visual Studio
	Operating System Support

	Polyspace Server for C/C++ Product
	Removed Cygwin Software Dependency for Windows Platforms
	Enhanced Installer
	GNU Compiler Support for C++
	Operating System Support

